جدولة خط انتاجي باستخدام أسلوب المسار الحرج/ دراسة حالة في الشركة العامة للصناعات الكهربائية

م.م. منى شاكر سلمان/الجامعة التقتية الوسطى/المعهد التقتي الصويرة / Muna.shaker@mtu.edu.iq

P: ISSN : 1813-6729 E : ISSN : 2707-1359 <u>https://doi.org/10.31272/jae.i135.1169</u>

تأريخ أستلام البحث : 2022/8/21 مقبول للنشر بتأريخ :9/20/ 2022

المستخلص

تواجه ادارة المشروع تحديات تتمثل في انجاز المشروع على الرغم من خضوعه لقيود تتعلق بالوقت و الموارد المالية المخصصة للمشروع لذا فأن هذا الامر يتطلب حساب دقيق للوقت والكلفة , يتناول البحث مشروع اكمال طلبية انتاج 2000 سخاناً كهربائياً في الشركة العامة للصناعات الكهربائية بعد تحليل تأخير في مشروع اكمال الطلبية عن الوقت والكلفة المقرر له . وعلى هذا الاساس تم دراسة المشروع من جديد وفق الاساليب العلمية والرياضية الحديثة، استعمال اسلوب المسار الحرج (CPM) لايجاد وقت اكمال الطلبية وكلفتها وبالاعتماد على احد البرامج الجاهزة الكفوءة وهو برنامج (WinQSB2) .ومن أهم النتائج (257) يوماً لانجاز طلبية انتاج 2000 سخاناً كهربائياً وبكلفة قدرها (152,000,000) مليون دينارا. ان وقت وكلفة الكمال طلبية انتاج 2000 سخاناً كهربائياً في الشركة العامة للصناعات الكهربائية بالاعتماد على الخبرة الشخصية والاساليب الرياضية البسيطة وحسب البيانات التي اخذت من قسم التخطيط في الشركة كان (300) الشخصية والاساليب الرياضية البسيطة وحسب البيانات التي اخذت من قسم التخطيط في الشركة كان (300) استنتج ان الأسلوب المقترح اثبت كفائته ورصانته في جدولة أوقات الأنشطة فضلا عن تقليله لوقت انجاز الطلبية بـ (43) يوماً وتقليله للكلفة بمقدار (38,000,000) مليون ديناراً عما مخطط له في الشركة.

الكلمات المفتاحية: طريقة المسار الحرج (CPM) ، جدولة المشروع ، برمجية (WinQSB2) .

مجلة الادارة والاقتصاد مجلد 47 / العدد 135 / كانون الاول/ 2022 الصفحات: 146 - 161

1. المقدمة

تعد مرحلة جدولة المشروع المرحلة التي تعنى بدراسة الوقت الذي يعد واحداً من الاهداف الرئيسة للمشروع فضلا عن وضع تقديرات حاجة الانشطة من الموارد الاساسية مثل القوى العاملة والمواد والمعدات وغيرها واجراء الموازنة السليمة في توزيعها مابين الانشطة بحسب حاجة كل نشاط. أن من أهم التحديات التي تواجه إدارة اي المشروع في الوقت الحاضر هو ضمان إنجاز المشروع على الرغم من خضوعه لقيود محددة منها قيود تتعلق بالوقت وأخرى تتعلق بالموارد المالية المخصصة للمشروع لذا فإن هذا الأمر يتطلب حساب دقيق للوقت والكلفة وعلى هذا الأساس لابد من دراسة المشروع وفق الأساليب العملية والرياضية الحديثة ومنها طريقة المسار الحرج (Critical Path Method (CPM) الموادد من افضل اساليب جدولة المشروع وهي طريقة المسار الحرج لايجاد وقت وكلفة اكمال طلبية انتاج 2000 من منتج السخان الكهربائي في الشركة العامة للصناعات الكهربائية.

2. منهجية البحث

1.2 مشكلة البحث

تعاني الشركة العامة للصناعات الكهربائية من ضعف في تخطيط وجدولة عملياتها الانتاجية و اعتماد الاساليب الكمية لمعالجة التلكؤ في انجاز المشروع والوصول الى الهدف المرجو وهناك اسباب عديدة تؤدي الى تلكؤ انجاز المشروع في الوقت المناسب وبالتالى زيادة كلفته الكلية اهمها:

- عدم الاهتمام بعامل الزمن مما يؤدي الى التأخير في انجاز المشروع وغياب التخطيط وفق منهج علمي واضح.
 - تعتمد الشركة على الخبرة الشخصية والمهارات الفردية في تنفيذ المشروع ولا تعتمد على الاساليب العلمية.
- تجاوز التكاليف للمشاريع عن الميزانية المخصصة.
 وبالاعتماد على الاساليب العلمية والرياضية التي سوف نستعملها لاكمال المشروع وبأقل كلفة سيحاول هذا

البحث الاجابة على السؤال الاتي: هل بالامكان حساب وقت وكلفة اكمال المشروع الانتاجي في الظروف الطبيعية باستعمال اسلوب المسار الحرج؟

2.2. هدف البحث

في ضوء ما تضمنته مشكلة البحث وبما ينسجم معها يمكن تحديد هدف البحث في النقاط الانتية:

- الاستغلال الامثل للموارد المتاحة وتحسين الاداء من خلال تطبيق اساليب البرمجة الشبكية بشكل عام واسلوب المسار الحرج (CPM) بشكل خاص.
 - التنسيق بين الانشطة وتنظيمها بشكل متسلسل ومتتابع .
- 3. ايجاد وقت وكلفة اكمال المشروع في الظروف الطبيعية. وباستعمال احد البرامج الجاهزة الكفوءة وهو برنامج (WINQSB2) لايجاد النتائج وتزويد البحث بالجداول والاشكال التوجيهية اللازمة لذلك.

3.2. أهمية البحث

- المساهمة في تقليل تأخير الانجاز والحد من الآثار المترتبة عليه في المشاريع .
 - الارتقاء بمستوى اداء وادارة المشروع وفق المنهج العلمي الصحيح .
- تقديم الفائدة الى الباحثين في المجال الاكاديمي الممارسين في الجانب العلمي .
- تعزيز المكتبة العلمية بمزيد من الابحاث والدراسات التطبيقية في مجال المشاريع الانتاجية .

4.2 مجتمع وعينة البحث

يمثل مجتمع البحث جميع المنتجات التي تقوم بانتاجها الشركات الإنتاجية التابعة لوزارة الصناعة العراقية وتم اختيار احد منتجات الشركة العامة للصناعات الكهربائية وهو منتج السخان الكهربائي سعة (80 لتراً) كعينة للبحث, اذ يعد هذا المنتج احد اهم منتجات الشركة لكونه يصنع بشكل كامل داخل معامل الشركة علاوة على ما تبين للباحث من المراجعة المتكررة للشركة من حقيقة ان الطلب على هذا المنتج كبير في السوق العراقية يعكس حاجة ضرورية تستوجب البحث والتحليل المستمرين.

5.2 . أداة البحث

في هذه البحث سنتبع المنهج الوصفي التحليلي, من خلال ماطرح في الاطار النظري الذي يتطرق الى اهم المفاهيم والمبادئ الاساسية لادارة المشروع والتخطيط الشبكي بالاعتماد على المصادر والادبيات والابحاث العلمية في خلال مجال البحث كما يأخذ البحث منهج دراسة الحالة حيث اعتمد البحث على المنهج الكمي في المجانب العملى فيه, حيث يتم استخدام ادوات قياس كمية وهو اسلوب المسار الحرج (CPM) من خلال البرامج

الخاصة بها وذلك بالاعتماد على برنامج (WINQSB2) لايجاد النتائج وتزويد البحث بالجداول والاشكال التوجيهية اللازمة لذلك.

6.2. الاساليب المستخدمة في حل وتحليل البيانات:

اعتمد الباحث على عدة اساليب في عملية جمع البيانات شملت كل من المقابلات الشخصية مع السادة مدراء الأقسام (البحث والتطوير والتصميم , المالية , السيطرة النوعية , تخطيط المواد ,التسويق , مدير الخط الإنتاجي) في الشركة حيث تم جمع البيانات وتبويبها من خلال سجلات الشركة المبحوثة وأراء الخبراء من المذكورين.اعتمد الباحث على اسايب التحليل الشبكي حيث استعمل اسلوب المسار الحرج (CPM) في جدولة اوقات المشروع ومن ثم إيجاد وقت اكمال المشروع.كما جرى استعمال البرامج (Excel , Word) لتهيئة وتبويب بيانات البحث واعداد الجداول والاشكال وبرامج اخرى في عملية إيجاد النتائج خاصة ببحوث العمليات وإدارة وجدولة المشاريع مثل البرنامج (Win QSB2).

7.2 الدراسات السابقة

قدم عدد من الباحثين دراسات حول موضوع استخدام اساليب البرمجة الشبكية ومنها اسلوب المسار الحرج CPM في اكمال المشروع وبأقل كلفة ممكنة ففي عام (2014) اقترح الباحث (Kadim, 2014) استعمال استخدام أسلوب المسار الحرج (CPM) للسيطرة على العمليات التصنيعية لتقليل أوقات العمليات التصنيعية والجهد اللازم للإنتاج من خلال دمج بعض العمليات الإنتاجية وتقليل الوقت لتقليل تكاليف التصنيع وقد اثبتت الطريقة كفائتها وجدارتها من خلال النتائج المستحصلة. في العام (2015) استخدم الباحثان (Khalaf and Salman, 2015) الاساليب العلمية والرياضية الحديثة واستعمال احد اساليب جدولة وادارة المشروع وهو اســلوب CPM لايجاد وقت انجاز مشروع القرية العصرية , ولادارة المشروع اهداف متعددة تسعى الى تحقيقها في أن واحد الامر الذي يتطلب الجهد الكبير وصعوبة الوصول الى قرارات مناسبة من قبل متخذ القرار فكان لا بد من استخدام اسلوب رياضي كفوء وهو برمجة الأهداف لبناء نموذج رياضي متعدد الاهداف وبينت النتائج المتحصلة من حل الانموذج الرياضي باستعمال احد البرامج الجاهزة (Win Q.S.B.V2) الى اهمية هذا الاسلوب وكفاءته لجدولة مشروع القرية العصرية في ظل وجود اهداف عديدة ومتناقضة لادارة المشروع حددتها وفق اهميتها وتسعى الى تحقيقها في أن ٍ واحد. في العام (2020) ونتيجة للتاخير الذي تعانيه مشاريع ادارة البلدية في محافظة كربلاء المقدسة من مشكلة تأخير مشاريعها وفوضى في طرق التنفيذ اقترح الباحثان (Jawad and Kazem, 2020) استخدام طريقة المسار الحرج CPM في جدولة مشروع تبليط شارع حي العامل سايد الاياب بطول (1,52كم) لتقايل وقت انجاز المشروع ولتقديم المساعدة لهذه المديرية وبيان كيفية جدولة المشاريع بإحدى الطرق العلمية المتقدمة حيث أثبتت نتائج الدراسة قدرة أسلوب المسار الحرج CPM على جدولة أي مشروع وإمكانية تسريع وقت الإنجاز وكذلك سهولة الاستخدام وفعالية النتائج خاصة مع إدخال البرامج الحديثة.

3. الإطار النظري

1.3 مفهوم المشروع

ان المشروع يمكن ان يكون عملية بناء مصنع او بناية مستودع او ان يكون تطوير منتجات جديدة او ادخال نظام جديد او تطوير برمجية والمشروع كما يبدو هو حزمة من الانشطة والمهام التي لها بداية ونهاية (الشمري,24,23:2007) , وهذا قد لا يكون كافياً في التعبير عن المشروع , يورد الباحثون عدة تعاريف عديدة للمشروع تتفق في الكثير من العناصر لكنها تختلف من حيث الشمولية واسلوب التعبير , على سبيل المثال (جابر, 1988: 89): يعرف المشروع بانه نشاط بشري منظم يهدف الى انجاز هدف معين في فترة زمنية محددة وباستخدام موارد متنوعة من العاملين والمستلزمات الفنية والطاقة والمواد الاولية والموارد المالية ، اما جمعيــة ادارة المشروع البريطـاني (Association of Project management)عرفت المشروع بانه مجموعة من الانشطة المترابطة غير الروتينية لها بدايات ونهايات زمنية محددة يتم تنفيذها من قبل شخص او منظمة لتحقيق اداء واهداف محددة في اطار معايير الكلفة , الزمن , الجودة، كما عرفه معهد ادارة المشروع (PMI 2001) بانه مبادرة او مقاولة مؤقتة لانتاج او تقديم منتج, خدمة, او نتيجة فريدة (العبيدي و الفضل, 2010: 14,13). يلاحظ من التعاريف السابقة انها تنطبق على كل عمليات ادارة المشروع سواء كانت تلك المشاريع صغيرة الحجم او كبيرة وبغض النظر عن نوع المنتج (المخرجات) من المشروع سواء كان سلعة او تقديم خدمة , المهم انها تقع ضمن عمليات المشروع .

2.3 خصائص المشروع

هناك بعض الخصائص التي تتميز بها المشروعات بحيث ان كل مشروع له خصائص تختلف عن المشروعات الاخرى وتتمثل هذه الخصائص فيما يلي (صالح,1987: 78):

جدولة خط انتاجي باستخدام أسلوب المسار الحرج/ دراسة حالة في الشركة العامة للصناعات الككربانية

- 1. ان الهدف (Objective): يمثل النتيجة النهائية للمشروع, أي لكل مشروع غرض محدد ونشاط يحدث لمرة واحدة فقط لتحقيق الهدف الرئيسي للمشروع.
- 2. دورة الحياة (Life Cycle): حيث تبدأ المشاريع بفكرة وتستمر من خلال عمليات التخطيط والتنفيذ الى نهايتها وعليه فأن كل مشروع له طبيعة مؤقتة وخاصية حياتية تبدأ من نقطة وتنتهى عند نقطة معينة.
- التداخلات (Interdependencies) عادة تتداخل المشروعات في المنظمة بعضها البعض وتتداخل ايضاً مع
 الاقسام الوظيفية الاخرى في المنظمة من انتاج وتسويق وتمويل وموارد بشرية ... الخ .
- الانفرادية (Uniqueness): كل مشروع له مزايا وخصائص يتميز بها عن أي مشروع آخر فلكل مشروع اهدافه المتنوعة ووسائله المختلفة لتحقيق هذه الاهداف .
- النزاع (Conflict): المشاريع تواجه صراعات مختلفة سواء مع بعضها البعض في المنظمة او مع الاقسام الوظيفية الاخرى في المنظمة.
- القيود (Constrains): لكل مشروع مجموعة من القيود والمحددات تقف امام تنفيذه ومن هذه القيود الوقت,
 التكلفة, الجودة, البيئة, الثقافة التنظيمية والقيم (المالكي, 2010: 53).

3.3 ادارة المشروع

يرجع تنظيم أي مهمة كمشروع الى تركيز المسؤولية والسلطة لفرد او مجموعة صغيرة من الافراد لضمان تحقيق الاهداف وتعرف ادارة المشروع بانها: الوظيفية الادارية التي تتضمن مسؤولية تحديد [الاهداف, التنظيم, التخطيط, الجدولة, الميزانيات التقديرية, التوجيه والرقابة] لتحقيق المعايير الفنية والمالية والمالية والمالية المشروع (صالح، 1987: 90). وتعرف ايضاً بانها: مجموعة الاساليب المستخدمة لادارة فريق من الافراد لانجاز سلسلة من المهام والانشطة ضمن جدولة زمنية معينة وموازنة محددة. (دودين, 2012: 27,26) وتشتمل ادارة المشروع على مايلي: (تحديد المتطلبات الخاصة بالمشروع, وضع اهداف واضحة ويمكن تحقيقها, توازن وتحقيق المتطلبات التنافسية للجودة والنطاق والوقت والكلفة, تكييف المواصفات والخطط والاساليب نحو الاهتمامات والتوقعات المختلفة لاصحاب المصلحة في المشروع)

1.3.3 تخطيط المشروع

التخطيط هو اول الوظائف الادارية واهمها وتركز عليه باقي الوظائف الادارية الاخرى من تنظيم وتوجيه ورقابة ان التخطيط له علاقة مباشرة بعنصرين رئيسيين:الاول هو المستقبل , الثاني هو العلاقة بين الاهداف والطرق المستخدمة لتحقيق هذه الاهداف وان أي مشروع سيواجه العديد من التغييرات في الواقع العملي التي لا يمكن السيطرة عليها ومثال ذلك: (ان يكون العاملون دون المستوى المطلوب من المهارة , المورد لا يوفر المواد بالتوقيت او الجودة المطلوبة) و هنا يأتي دور التخطيط من خلال رسم الاستجابات المطلوبة لحل كل مشكلة قبل وقوعها(المالكي, 2010: 39).أي ان التخطيط هو اداة لبناء تصور مسبق عن مراحل تنفيذ المشروع والمخاطر المتوقعة التي سيواجهها والاستجابات اللازمة للمعالجة. ويعرف تخطيط المشروع ايضاً بانه المرحلة التي ينتقل فيها المشروع من مجرد فكرة الى خطة توضح اهدافه ونشاطاته وخدماته والفئات الموجه اليها وكيف يتم التعامل مع الزبائن. (العبيدي و الفضل , 2010: 14,13)

2.3.3 خطة المشروع

تمثل خطة المشروع خريطة طريق ترشد فريق المشروع الى كيفية الوصول من نقطة انطلاق المشروع الى نقطة انهائه, ولاهمية الخطة فان اعدادها يتطلب جهدا ووقتا كبيرا من ادارة المشروع وقد تشترك جميع الاطراف المهتمة في المشروع في اعداد الخطة لضمان فهمها وتقليل فرص حدوث الصراعات بينها في مرحلة التنفيذ، وتتضمن هذه المرحلة ايضا تحليل الانشطة الى وحدات حيث تكون كل وحدة مكونة من مجموعة من الانشطة من نفس نوع العمل وبنفس الحجم ثم تحليل هذا المستوى الى المستويات الادنى ثم بعد ذلك يتم بناء شبكة عمل المشروع (نجم, 2013: 75). وفي اطار المشروع تاخذ الخطط ثلاثة ابعاد تركز على مايلي (نجم 2012: 82): 1. الوقت اللازم للانجاز 2. الموارد المالية 3. الموارد البشرية للمشروع.

3.3.3 ادوات التخطيط والرقابة

تستلزم عملية التخطيط اعداد الجداول وبرامج العمل التفصيلية وكلما كان اعداد هذه الجداول سهل التعلم والاستخدام كلما انخفضت كلفة التخطيط والعكس صحيح ، ونتيجة لدعم الحاسوب في اعداد الجداول والمخططات اصبحت ادوات التخطيط والسيطرة متاحة من خلال الحاسوب الشخصي الصغير بدلا من الحاسوب الكبير قبل بضع سنين ومن اهدم الادوات مايلي (العبيدي ، الفضل ، 2010:56)

1. مخطط تحليل العمل (Work- break down structure (WBS) مخطط تحليل العمل

2. مخطط غانت Gantt Chart

3. شبكات الاعمال Networks

4.3. انواع المشاريع

جدولة خط انتاجي باستخدام أسلوب المسار الحرج/ دراسة حالة في الشركة العامة للصناعات الككربائية

اصبحت المشاريع تتزايد بشكل واسع في مختلف الشركات وذلك بسبب تنوع المنتجات الجديدة, الدخول في السواق جديدة, ازدياد حجم المنافسة المحلية والعالمية, التطورات السريعة في التكنولوجيا, التغيرات في طبيعة بيئة الاعمال العالمية, والزيادة في طلب الزبون على منتجات متنوعة بشكل كبير من اجمالي الجهود التنظيمية الى النشاطات الموجهة للمشروعات.

ويعرض المتخصصون في العلوم الادارية تقسيمات مختلفة للمشاريع في الواقع العملي وذلك بالاستناد الى طبيعة القطاع او طبيعة الهدف الذي يؤسس من اجله المشروع, وفيما يلي توضيح لكل واحدة من هذه الانواع أ- المشاريع الانشائية: وهي المشاريع الاكثر شيوعاً في الواقع العملي.

ب- المشاريع الصناعية: أذات الطابع الهندسي والتكنلوجي والتي تهدف الى اقامة المصانع والخطوط الانتاجية الخ

ث- المشاريع الخدمية: يتمخض عنها مخرجات ملموسة او غير الملموسة مثل مشروع تسويق منتج جديد. الخ. ت- مشاريع علمية: ويقصد بذلك كافة المشاريع العلمية البحثية ذات الطابع العلمي (معالجة مشكلة كساد او تدهور ، تصميم بناء معلوماتي او حاسوبي ، تطوير منتج معين ، بحوث الفضاء واكتشاف البحار ، . الخ)

ج- المشاريع الاجتماعية: ان المشاريع الاجتماعية ترتبط بتوجيهات الدولة نحو خلق تنمية اجتماعية .

د- المشاريع الاقتصادية: ويقصد بذلك المشاريع على مستوى اقتصاد البلد بشكل عام (الشمري ،25:2007)

5.3 أدارة وقت المشروع

أن اتخاذ القرار باقامة المشروع يعني تخصيص الموارد الضرورية له مما يتوجب على ادارة المشروع من استغلال هذه الموارد بالشكل الافضل وبفاعلية لتحقيق هدف المشروع المقرر، ومن ابرز هذه الموارد هو الزمن الذي يتوجب عدم تجاوزه ووفق مواصفات وشروط المشروع الواجب تحقيقها بما تلبي حاجات ومتطلبات المستخدم للمشروع ، ويتم تمثيل الجدولة بعدة طرق منها الجداول الزمنية او المخططات البيانية (Bar) او مخططات الشبكية. هي (Gantt Charts) او مخططات الشبكية. هي (Salman, 2015:181):

وبالنظر لكون المشروع عبارة عن منتج يمتاز بالتفرد والخصوصية لذا فأن الفعاليات المتشابهة بالمشروع ليست بالضرورة من ان تنجز بنفس الطريقة وهذا مايتطلب من العاملين الاستفادة من الخبرات المتراكمة في مجال التخطيط والجدولة في أدارة المشروعات (دودين ، 2012 : 85)

تشتمل أدارة وقت المشروع على العمليات اللازمة لأكمال المشروع في الوقت المحدد والتي تتمثل بالتالي:

- 1- تحديد الانشطة من خلال تحديد الاجراءات التي يتم تنفيذها كي يتم أنتاج مخرجات المشروع.
 - 2- تسلسل الانشطة وهي عملية تحديد وتوثيق العلاقات بين انشطة المشروع.
- 3- تقدير موارد النشاط هي تقدير نوع وكميات المواد والافراد والمعدات اللازمة لتنفيذ كل نشاط من الانشطة.
- 4- تقدير الفترات الزمنية للنشاط وهي تقدير فترات العمل لاكمال الانشطة المستقلة باستخدام الموارد المتاحة.
- وضع الجدول الزمني هو عملية تحليل تسلسلات الانشطة وفتراتها والموارد اللازمة وقيود الجدول الزمني
 - ٥- مراقبة الجدول الزمني هي عملية مراقبة حالة المشروع لتحديث تقدم المشروع والتحكم في التغييرات .

6.3. ادارة المشاريع باستخدام اسلوبي (CPM, PERT)

المشروع (Project) كما عرف سابقا على انه مجموعة من الانشطة المتداخلة الواجب انجازها في تتابع مؤكد ليتم انجاز المشروع بشكل كامل، ان تتابع الانشطة يجب ان يكون وفق تسلسل منطقي حيث ان بعض الانشطة لا يمكن البدء فيها قبل انهاء البعض الاخر.من أكثر الاساليب المستخدمة في مجال التخطيط (Planning) والرقابة او السيطرة على المشاريع (Controlling) هما اسلوبان:طريقة المسار الحرج (CPM) اسلوب تقييم ومراجعة البرامج (PERT) . اهم الاختلافات بين الاسلوبين هو ان تقدير الوقت لإنجاز النشاط في (CPM) يحدد بشكل مؤكد بينما في (PERT) يحدد بشكل احتمالي (Kadim, 2014: 182).

(Projects Diagramming) الرسم التخطيطي للمشاريع. 1.6.3

هناك اساليب مختلفة لتمثيل المشاريع بشكل تصويري الا ان اكثرها استخداماً Khalaf and). Salman2015:170).

- 1- رسوم (كانت) (Gantt Chart) والتي لم يعد استخدامها واسع لتقادمها.
- 2- الرسم الشبكي (Network Diagrams): يمكن تطبيقه على مختلف المشاريع مهما كبر حجمها او زادت درجة تعقيدها كما يمكن تطبيقه على جزء من المشروع او أي مرحلة منه، يمكن ملاحظة العناصر الاساسية في عملية تمثيل المشاريع بالرسم الشبكي وهي:
 - الحدث(Event):
 - الانشطة (Activities)
 - المسار (Path):

جدولة خط انتاجي باستخدام أسلوب المسار الحرج/ دراسة حالة في السّركة العامة للصناعات الككر بائية

• المسار الحرج (Critical Path)

2.6.3. مفهوم شبكات الأعمال:

تعرف شبكات الاعمال بأنها أنموذج يمكن من خلاله التخطيط للمشروع على شكل يتكون من عدة اسهم ومجموعة دوائر ، وتعرف ايضا بانها مجموعة من الانشطة والاحداث لها نقطة بداية واحدة ونقطة نهاية واحدة ، ويمكن التعبير عن هذه الانشطة بالرموز الاتية (العبيدي و الفضل , 2010: 18-19):

- يمثل النشاط بسهم (→) له بداية ونهاية ويستهلك وقت وله كلفة .
- 2. تمثل الدائرة (() الحدث اي نقطة البداية او النهاية لنشاط معين .
 3. السهم المنقطع (_ _) نشاط و همي لا وجود حقيقي له يستخدم لبيان العلاقة بين الانشطة ويستهاك وقت وله

والمدخل الرئيسي لأدارة وقت المشروع هو تشكيل شبكة فعلية او صورية لعلاقات الانشطة والتي تمثل العلاقات المتتابعة بين الانشطة في المشروع ، وتعرف الانشطة التي يجب ان تسبق او تتبع انشطة اخرى بوضوح وكذلك الوقت والوظيفة ايضا ، وتكون مثل هذه الشبكة اداة قوية لتخطيط المشروع ومراقبته وتتميز بالمنافع الاتية:

- تعتبر اطارا متسقا لتخطيط ، جدولة ، توجيه ، مراقبة المشروع .
 - توضيح التداخلات لكل نشاط ، حزم العمل ، وحدات العمل .
- تحدید الاوقات التی بنبغی علی افراد محددین ان یکونوا متاحین للعمل فیها علی نشاط معین.
 - تحدید تاریخ اکمال المشروع.
 - تحديد الانشطة الحرجة والتي اذا تاخرت ستؤخر وقت اكمال المشروع. تحديد تواريخ بداية الانشطة .

3.6.3. طريقة المسار الحرج CPM

تعتمد طريقة المسار الحرج على تحديد اطول المسارات ، اذ يعرف المسار الحرج (CPM) بانه طريقة من طرق التخطيط تعتمد على التحليل الشبكي وتستخدم في تخطيط المشاريع المعقده تخطيطا اقتصاديا وتبين بصورة بيانية العلاقات المترابطة بين جميع أوجه النشاط ُفي المشروع ، كمّا يمكن تعريفه بأنه المسار الذي يضم مجموعة من الانشطة ويستغرق زمنا اكثر من كافة المسارات في شبكة المشروع(المالكي, 2010: 86):

1.3.6.3. حسابات طريقة المسار الحرج:

لغرض ايجاد المسار الحرج لابد من حساب الأوقات المبكره والمتاخره للمشروع ويكون من خلال اجراء نوعين من الحسابات هي (خلف، 2022: 293-293):

الحسابات الامامية (Forward Computation): تبدأ من أول نقطة زمنية (اول حدث) في المخطط الشبكي وتتجه الى آخر نقطة زمنية (اخر حدث) فيه وعند كل نقطة زمنية نحسب رقم (يوضع داخل مربع صغير) ويمثل هذا الرقم وقت الحدوث أو زمن الأبتداء المبكر لتلك الأنشطة التي تبدأ بالحدث (i) وهو أقرب وقت متوقع لأتمام عمل او مهمة معينة , وتكون كما يلى:

- 1. وقت البداية المبكرة (Early start ES) للنشاط الذي يبدأ بالحدث i: يكون هذا الوقت بالنسبه للانشطه الاولى في شبكة المشروع يساوي صفرا، حيث ان:
- م. حدث البداية المبكر لأول نشاط (ES_1) يساوي حدث البداية المتاخر له (LS_1) ويساوي صفر ولا مخطط aشبكي وكما يلي:

$$ES_1 = LS_1 = 0 (1)$$

اما بالنسبة للانشطة الاخرى فأن وقت البداية المبكرة للنشاط الذي يبدأ بالحدث j يساوي وقت البدايه المبكرة للنشاط الذي يسبق النشاط j (أي النشاط i) + الوقت الذي يستغرقه النشاط t_{ij} ، فمثلا البداية المبكرة للنشاط الذي يبدأ بالحدث (ES_i) يساوي وقت البداية المبكرة للنشاط الذي يبدأ بالحدث الوقت الذي الدي المبكرة النشاط الذي الحدث المبكرة المبكرة النشاط الذي الحدث المبكرة المب يستغرقه النشاط t_{ii} أي تكون المعادلة كما يلى:

$$ES_{j} = ES_{i} + t_{ij} \tag{2}$$

2. وقت النهاية المبكرة للنشاط الذي ينتهي بالحدث j (Early Finish EF): ويساوي وقت البداية المبكرة له وقته (وقت النشاط $((t_{ij}))$ أي الوقت الذي يستغرقه النشاط (t_{ij}) ، في حالة وجود نشاط واحد سابق + (ES_i) ، ای :

b. اذا كان حدث النهاية j (EF_j) في المخطط الشبكي يرتبط بنشاط واحد فان المعادلة الرياضية

$$EF_i = ES_i + t_{ij} \tag{3}$$

ما في حالة وجود اكثر من نشاط يدخل الحدث j فاننا ناخذ النشاط الأعلى او النشاط الذي يكون حاصل جمع بدايته المبكرة مع وقت إنجازه هو الأعلى من بين الأنشطة التي تدخل الحدث j وكما في المعادلة الرياضية الاته:

$$EF_{j} = max [ES_{i} + t_{ij}]$$
 (4)

اذ ان:

(i,j) هي الفترة الزمنية اللازمة لانجاز الفعالية او النشاط t_{ii}

الحسابات الخلفيه (Backward Computations): وهي الحسابات التي تحدد وقت الانجاز المتاخر للمهام (الانشطة) اذ ان هذه الحسابات تبدا من حيث انتهاء الحسابات الأمامية اي انها تبدا من الحدث الاخير في المخطط الشبكي وتنزل بشكل تراجعي الى الحدث الأول حيث ان:

- 1. وقت النهاية المتأخرة للنشاط الذي ينتهي بالحدث j (Latest Finish LF): النهاية المتأخرة لأي نشاط هي اخر وقت يمكن ان ينتهي فيه النشاط دون ان يؤثر على انجاز المشروع ويرمز له (LF_i) أي ان :
 - وقت النهاية المتأخرة للنشاط الذي ينتهي بالحدث (LF_j) يساوي وقت النهاية المبكرة للنشاط الذي ينتهي بالحدث (EF_i) للحدث الاخير في شبكة المشروع وكما يلي:

$$LF_{i} = EF_{i} \tag{5}$$

- 2. وقت البداية المتأخرة للنشاط الذي يبدأ بالحدث i (Latest Start LS): البداية المتأخرة لأي نشاط هي اطول وقت يمكن تأخيره لبدء النشاط الذي يبدأ بالحدث i دون ان يؤثر على انجاز المشروع في الوقت المحدد له ويرمز له (LS_i) ويبدأ بتحديد الانشطة اللاحقة لكل نشاط في الشبكة ، فتكون المعادلة الرياضيه:
- مطروحاً منها (LF_j) j منه وأحد لاحق فان النهاية المتأخرة للنشاط الذي ينتهي بالحدث (LF_j) مطروحاً منها الوقت اللازم لإنجاز النشاط (t_{ij}) تساوي البداية المتأخرة للنشاط الذي يبدأ بالحدث (LS_i) ، وكما يلي:

$$LS_i = LF_j - t_{ij} (6)$$

b. اما في حالة وجود أكثر من نشاط لاحق فان النهاية المتأخرة للنشاط الذي ينتهي بالحدث (LF_j) مطروحاً منها الوقت اللازم لإنجاز النشاط (t_{ij}) تساوي لأصغر او اقل قيمة الى (LS_i) ، أي اننا ناخذ النشاط الأقل او النشاط الذي يكون حاصل طرح وقت إنجازه من نهايتة المتاخرة هو الأقل من بين الأنشطة التي تخرج من الحدث i وكما في المعادلة الرياضية الاتية:

$$LS_i = \min[LF_j - t_{ij}] \tag{7}$$

2.3.6.3. ايجاد الوقت الفائض (Computing Slack Times)

يمكن تحديد نشاطات المسار الحرج بالاعتماد على نتأنج طريقة الحسابات الاماميه (Backward Computations) وذلك باستخدام احدى الطرق التالية (خلف، 2022: 93-289):

(ES) البداية المبكرة (LS) – البداية المتأخرة (Slack) – البداية المبكرة ((LS)

$$Slack = LS - ES$$
 (8)

(EF) النهاية المبكرة (LF) النهاية المبكرة (Slack) النهاية المبكرة (EF

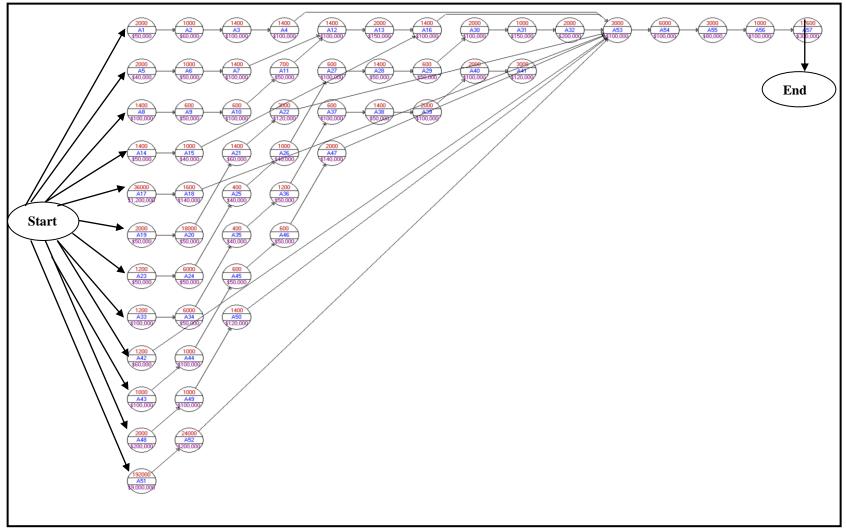
$$Slack = LF - EF \tag{9}$$

يتم ايجاد الوقت الفائض عن طريق زمن البدايات والنهايات، فلو تم اختيار زمن البدايات فان الناتج كما في الجدول ادناه:

4. الاطار العملى

1.4. بيانات مشكلة البحث

تم استخدام واحد من الاساليب الكمية المشهود له بالكفاءة والدقة في ادارة وجدولة المشاريع المختلفة حيث تم استخدام أسلوب المسار الحرج (CPM) لاكمال هذه الطلبية والجدول (1) يوضح وصف لانشطة الطلبية واوقاتها وكلفها والاعتمادية بينها.


الجدول (1) وصف لانشطة الطلبية واوقاتها وكلفها والاعتمادية بينها

		والطبيه واوقاتها وخلفها والاع	ت رسط	الجدون (۱) وتعد		
الكلفه بالدينار	الوقت بالدقائق	النشاط السابق	النشاط	وصف الانشطة		
500000	2000		A 1	الفحص العام (generalassay)		
600000	1000	A 1	A2	عملية الدرفلة		
1000000	1400	A2	A3	عملية اللحام		
1000000	1400	A3	A4	لحام القاعده مع مجمع الخزان		
400000	2000		A5	تقطيع المعدن		
500000	1000	A5	A6	عملية التثقيب		
1000000	1400	A6	A7	عملية اللحام		
1000000	1400		A8	تقطيع المعدن(tank cover)		
500000	600	A8	A9	تقطيع على شكل قرص دائري		
1000000	600	A9	A10	عملية السحب		
500000	700	A10	A11	عمليّة التثقيب		
1000000	1400	A7,A11	A12	عملية اللحام مع (tank body)		
1500000	2000	A12	A13	عملية التجميع		
500000	1400	A12	A14	عملية تقطيع المعدن(L-plate)		
400000	1000	A14	A15	عملية حني الجزء عملية حني الجزء		
1000000	1400	A13,A15	A16	عملية اللحام مع((tank cover		
12000000	36000	AIVIAIV	A17	عملية شراء جزء (socket)		
1400000	1600	A17	A17	عملية الخراطة		
500000	2000	All	A19	عملية تقطيع البليت(frame)		
500000	18000	A19	A19 A20	عملية التثقيب		
600000	1400	A19 A20	A20	عملية الدرفله		
1200000	3000	A20 A21	A21	عملية التجميع		
500000	1200	M4 I	A23	عملية تقطيع (lower cover)		
		V33	1	عملية التثقيب		
500000 400000	6000 400	A23 A24	A24 A25	عملية التخطيط		
400000	1000	A24 A25	A25 A26	عملية التقطيع على شكل قرص دانري		
	600	A25 A26	A20 A27	عمليه التعطيع على مندن فرص دادري عملية السحب		
1000000 500000	1400	A26 A27	A27	عملية الشحب عملية قص الحاشية		
500000	600	A27 A28	A20 A29	عملية تثقيب الجزء		
1000000	2000	A26 A29	A29	عملية تعيب الجرء عملية فحص نهائي		
1500000	1000	A29 A30	A30	عملية التنظيف وازالة الدهون		
2000000			1	عمليه الننطيف وارائه الدهون التجميع النهائي		
1000000	2000 1200	A31	A32	التجميع التهائي عملية تقطيع(upper cover)		
	-	A 2 2	A33			
500000	6000	A33	A34	عملية التثقيب عملية التخطيط		
400000	400	A34	A35	* *		
500000	1200	A35	A36	عملية التقطيع(اقراص) عملية السحب		
1000000	600	A36	A37			
500000	1400	A37	A38	عملية قص الحاشيه		
1000000	2000	A38	A39	عملية الفحص		
1000000	2000	A39	A40	عملية التنظيف وازالة الدهون		
1200000	3000	A40	A41	التجميع النهائي		
600000	1200		A42	عملية تقطيع ال(pipe)		
1000000	1000	A 40	A43	عملية تقطيع (heater cover)		
1000000	1000	A43	A44	عملية السحب		
500000	600	A44	A45	عملية قص الحاشيه		
500000	600	A45	A46	عملية التثقيب		
1400000	2000	A46	A47	التجميع النهائي		
2000000	2000	• • • • • • • • • • • • • • • • • • • •	A48	عملية حقن البلاستك		
1000000	1000	A48	A49	عملية تنظيف المنتج		
1200000	1400	A49	A50	التجميع النهائي		
9000000	192000		A51	عملية الشراء		
2000000	24000	A51	A52	عملية التجميع		
1000000	3000	A4,A16,A18,A22,A32,	A53	عملية التشكيل للخزان الداخلي		

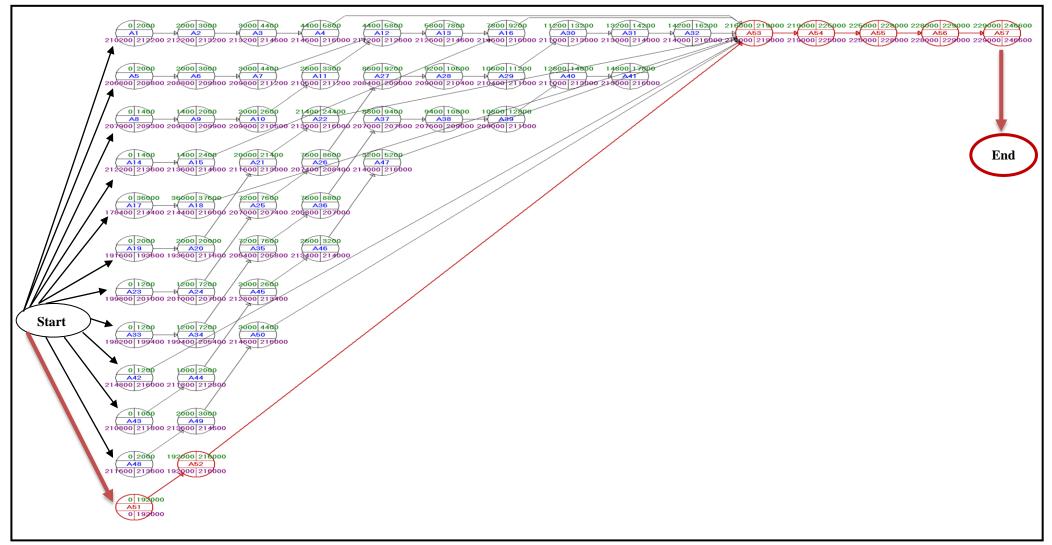
جدولة خط انتاجي باستخدام أسلوب المسار الحرج/ دراسة حالة في الشركة العامة للصناعات الككربائية

		A41,A42,A47,A50,A52		
1000000	6000	A53	A54	عملية اللحام النهائي
800000	3000	A54	A55	عملية الفحص النهائي
1000000	1000	A55	A56	عملية الغلونة
3000000	17600	A56	A57	العمليات التكنلوجيه التجميعيه

2.4. الرسم الشبكي للمشروع بعد الاطلاع على انشطة طلبية انتاج (2000) سخاناً كهربائياً واوقاتها والاعتمادية بينها يمكن رسم شبكة المشروع وكما يلي:

شكل(1) يمثل الأنشطة والاعتمادية بينها واوقاتها لشبكة مشروع اكمال طلبية انتاج (2000) سخاناً كهربائياً

3.4. النتائج


بتطبيق المعادلات من (1-8) يتم حساب الأوقات المبكرة والمتاخرة لانشطة المشروع ليتم بعد ذلك إيجاد المسار الحرج للمشروع وهو وقت اكمال طلبية انتاج (2000) سخاناً كهربائياً وكلفة هذه الطلبية وكما في الجدول (2) والشكل (2) الذي يوضح شبكة المشروع والمسار الحرج له.

الُجِدُولُ (2) ايجاد المسار الحرج الاكمال طلبية انتاج (2000) سَخَاناً كهربائياً وكلفتها باستعمال برنامج (Win.QSB)

				(Win.Q	3B)			
التسلسل	Activity	On Critical	Activity	Earliest	Earliest	Latest	Latest	Slack
,	Name	Path	Time	Start	Finish	Start	Finish	(LS-ES)
1	A 1	No	2000	0	2000	210200	212200	210200
2	A2	No	1000	2000	3000	212200	213200	210200
3	A3	No	1400	3000	4400	213200	214600	210200
4	A4	No	1400	4400	5800	214600	216000	210200
5	A5	No	2000	0	2000	206800	208800	206800
6	A6	No	1000	2000	3000	208800	209800	206800
7	A7	No	1400	3000	4400	209800	211200	206800
8	A8	No	1400	0	1400	207900	209300	207900
9	A9	No	600	1400	2000	209300	209900	207900
10	A10	No	600	2000	2600	209900	210500	207900
11	A11	No	700	2600	3300	210500	211200	207900
12	A12	No	1400	4400	5800	211200	212600	206800
13	A13	No	2000	5800	7800	212600	214600	206800
14	A14	No	1400	0	1400	212200	213600	212200
15	A15	No	1000	1400	2400	213600	214600	212200
16	A16	No	1400	7800	9200	214600	216000	206800
17	A17	No	36000	0	36000	178400	214400	178400
18	A18	No	1600	36000	37600	214400	216000	178400
19	A19	No	2000	0	2000	191600	193600	191600
20	A20	No	18000	2000	20000	193600	211600	191600
21	A21	No	1400	20000	21400	211600	213000	191600
22	A22	No	3000	21400	24400	213000	216000	191600
23	A23	No	1200	0	1200	199800	201000	199800
24	A24	No	6000	1200	7200	201000	207000	199800
25	A25	No	400	7200	7600	207000	207400	199800
26	A26	No	1000	7600	8600	207400	208400	199800
27	A27	No	600	8600	9200	208400	209000	199800
28	A28	No	1400	9200	10600	209000	210400	199800
29	A29	No	600	10600	11200	210400	211000	199800
30	A30	No	2000	11200	13200	211000	213000	199800
31	A31	No	1000	13200	14200	213000	214000	199800
32	A32	No	2000	14200	16200	214000	216000	199800
33	A33	No	1200	0	1200	198200	199400	198200
34	A34	No	6000	1200	7200	199400	205400	198200
35	A35	No	400	7200	7600	205400	205800	198200
36	A36	No	1200	7600	8800	205800	207000	198200
37	A37	No	600	8800	9400	207000	207600	198200
38	A38	No	1400	9400	10800	207600	209000	198200
39	A39	No	2000	10800	12800	209000	211000	198200
40	A40	No	2000	12800	14800	211000	213000	198200
41	A41	No	3000	14800	17800	213000	216000	198200
42	A42	No	1200	0	1200	214800	216000	214800
43	A43	No	1000	0	1000	210800	211800	210800
44	A44	No	1000	1000	2000	211800	212800	210800
45	A45	No	600	2000	2600	212800	213400	210800
46	A46	No	600	2600	3200	213400	214000	210800
47	A47	No	2000	3200	5200	214000	216000	210800
	· · · · ·							

جدولة خط انتاجي باستخدام أسلوب المسار الحرج/ دراسة حالة في السّركة العامة للصناعات الككربانية

48	A48	No	2000	0	2000	211600	213600	211600
49	A49	No	1000	2000	3000	213600	214600	211600
50	A50	No	1400	3000	4400	214600	216000	211600
51	A51	Yes	192000	0	192000	0	192000	0
52	A52	Yes	24000	192000	216000	192000	216000	0
53	A53	Yes	3000	216000	219000	216000	219000	0
54	A54	Yes	6000	219000	225000	219000	225000	0
55	A55	Yes	3000	225000	228000	225000	228000	0
56	A56	Yes	1000	228000	229000	228000	229000	0
57	A57	Yes	17600	229000	246600	229000	246600	0
	Project	Completion	Time	=	246600	Minute		
	Total	Cost of	Project	=	\$152,000,000	(Cost on	CP =	\$9,880,000)
	Number of	Critical	Path(s)	=	1			

شكل(2) يوضح شبكة المشروع والمسار الحرج (باللون الاحمر) لمشروع اكمال طلبية انتاج (2000) سخاناً كهربائياً

4.4. مناقشة النتائج:

تبين من خلال استخدامنا لاسلوب (CPM) ان الوقت اللازم لأكمال الطلبية المكونة من 2000 سخاناً كهربائياً قدره (246600) دقيقة أي تقريبا 4110 ساعة عمل وعلى اساس ان هناك وجبتين عمل في اليوم الواحد للشركة بواقع 8 ساعات عليه يكون وقت اكمال انتاج طلبية 2000 سخاناً كهربائياً هو 257 يوماً عمل وبكلفة (152,000,000) مليون ديناراً كما هو مبين في الجدول (2) وبالمقارنه مع العمل في داخل الشركة يتبين ان هناك فرق في الوقت والكلفة اللازمة لأكمال الطلبيه المكونه من 2000 سخاناً كهربائياً وقدره (43) يوماً اما فرق الكلفة فبلغ (38,000,000) مليون ديناراً احتوى التقرير الشامل لبرنامج (WinQSB2) لنتائج ايجاد الوقت اللازم لاكمال المشروع على الاعمدة الاتيه:

- يتضمن العمود الاول تسلسل الانشطه.
- العمود الثاني (activity name) احتوى على انشطة المشروع مثال على ذلك النشاط الاول من انشطة المشروع و هو (A1).
- اما العمود الثالث (on critical path) فهو يوضح وقوع النشاط على المسار الحرج من عدمه, مثال على ذلك النشاط الأول(A1) لا يقع على المسار الحرج اذ يقابله في العمود الثالث الجدول كلمة(no).
- العمود الرابع (activity time) وهو يوضح الوقت الطبيعي لاكمال المشروع مثل الوقت الازم لاكمال النشاط الاول (A1) هو 2000 دقيقة.
 - العمود الخامس (earliest start) فهو يوضح البداية المبكرة لكل نشاط من انشطة المشروع مثل وقت بداية النشاط الاول(A1) هو صفر.
 - العمود السادس (earliest finish) يوضح النهاية المبكرة لكل نشاط من انشطة المشروع مثل وقت الانتهاء المبكر للنشاط الاول (A1) يساوي 2000 دقيقة.
 - العمود السابع (latest start) وهو عمود يوضح البداية المتأخرة لكل نشاط من انشطة المشروع.
 - العمود الثامن (latest finish) فهو يوضح النهاية المتأخرة لكل نشاط من انشطة المشروع.
 - اما العمود التاسع (slack) يوضح الوقت الفائض لكل نشاط من انشطة المشروع ويحسب من خلال المعادله الاتيه: (LS-ES) ومن خلال هذا العمود نستطيع ان نحدد الأنشطة الحرجة للمشروع والتي يكون وقت مرونتها يساوي صفر والذي يعني ان أي تأخير فيها سيؤدي الى تأخير المشروع وهذه الأنشطة هي A51 مرونتها يساوي صفر والذي يعني ان أي مرونتها سيؤدي الى تأخير المشروع وهذه الأنشطة هي A51.

5. الاستنتاجات والتوصيات

تتضمن هذه الفقرة الاستنتاجات التي توصل اليها الباحث من خلال الدراسة وعلى المستويين النظري والتطبيقي وكذلك تقديم التوصيات الذي يراها الباحث كفيله بنجاح الخطط المستقبليه للشركة.

1.5. الاستنتاجات

ان من اهم الاستنتاجات التي توصل اليها الباحث مايأتي:

- 1. افتقرت الشركة العامة للصناعات الكهربائية في تخطيط وجدولة عملياتها الانتاجية الى اعتماد الاساليب العلمية والرياضة والكمية مما أدى الى التلكؤ في اكمال طلبية انتاج 2000 سخاناً كهربائياً.
- 2. ان اتباع الشركة للأساليب العلميه الحديثه والبرامج الرصينه كان له الأثر الكبير في سرعة الإنجاز وتشخيص الأخطاء والتاخير الناجم عنها والذي يؤدي في أحيان كثيرة الى تعرض الشركة او إدارة المشروع الى اضرار مادية كبيرة، حيث تبين للشركة في حال تطبيق الأسلوب المقترح ان هناك فرق في الوقت والكلفة اللازمة في اكمال طلبية انتاج 2000 سخاناً كهربائياً قدره (43) يوماً وفرق كلفة بلغ (38,000,000) مليون ديناراً.
- 3. ان النتائج المتحققه من ادخال بيانات المشروع في برنامج (WinQ.S.B2), اعطت انطباعا واضحا لادارة المشروع التي تمتلك عدة اهداف تسعى الى تحقيقها عن اهمية اسلوب المسار الحرج والذي اثبت لادارة المشروع تقليله للوقت والكلفة.
- 4. ان استعمال البرامجيات الرصينة كالبرنامج (WinQ.S.B2) اعطى نتائج دقيقة لمتخذ القرار في الشركة بالاضافة الى إمكانية تعديل او تغيير البيانات داخل للبرنامج في حال تغيير الأنشطة أو أوقاتها او تغيير الكميات المنتجة أو انواعها.

2.5 التوصيات

هناك جملة من التوصيات اهمها ما يأتى:

1. يوصي الباحث قسم التخطيط في الشركة العامة للصناعات الكهربائية بالاعتماد على النتائج التي توصلت اليها الدراسة لضمان نجاح خططها المستقبلية لمشاريعها المختلفه.

جدولة خط انتاجي باستخدام أسلوب المسار الحرج/ دراسة حالة في الشركة العامة للصناعات

- الاهتمام بالمشاريع الصناعية والخاصة بالشركة العامة للصناعات الكهربائية لانها تمثل عصب اساسي في الحفاظ على الاقتصاد الوطني.
- اهمية توفير كافة المعلومات والبيانات لجميع المشاريع التي تقوم بها الشركه من القسم الهندسي والتي تتمثل بأوقات وتكاليف كل نشاط من أنشطة المشاريع.
- 4. اقامة دورات تدريبية وورش عمل لمدراء ومهندسي الشركة من اجل التعرف على الاساليب العلمية الحديثة من اجل انجاح المشاريع المستقبلية للشركة.
- متخذي القرار في عمليات المفاضلة للحصول على نتائج اسرع وبشكل دقيق. الاستعانة بالخبرات والكفاءات العلمية الموجودة في المؤسسات التعليمية العراقية من خلال مبدأ التعاون
 - المشترك بين دوائر الدوله من اجل تنفيذ المشاريع بطرق علميه حديثة ومواكبة التطور العلمي الهائل.

- المصادر العربية جسن, ضويه سلمان ،(1988) مقدمة في بحوث العمليات ,كلية الادارة والاقتصاد /جامعة جابر,عدنان شمخي؛ حسن, ضويه سلمان ،(1988)
- الجزائري, صفاء محمد هادي، (2008) . استخدام اساليب جدولة المشروع ,بيرت والمسار الحرج في المفاضله .2 الجرامري, صفاء حد هادي، (2000) . استعدام السلط المعهد التقني /البصره.
 بين الوقت والكلفه لانجاز المشاريع , دراسة تطبيقيه في المعهد التقني /البصره.
 خلف, وقاص سعد. (2022) بحوث العمليات لدعم القرار. دار غيداء للنشر والتوزيع. عمان. الأردن.
 دودين ,احمد يوسف ,(2012) ادارة المشاريع ,جامعة الزرقاء ادارة اعمال.
 الشمري ,زهره عبد محمد ,(2007) نموذج نضج ادارة المشروع: تصميم وحوسبة وتطبيق ,اطروحة دكتوراه
- كلية الاداره والاقتصاد /جامعة بغداد
- رسي العادرة والاستعمام بعده. صالح، هلال هادي؛ عبو, خالد جرجيس؛ صادق, ثناء رشيد,(1987) بحوث العمليات وتطبيقاتها /الجامعه
 - .7
- العبيدي, محمود ، الفضل, مؤيد(2010) ادارة المشاريع ,عمان مؤسسة الوراق للنشر والتوزيع. المالكي,حنان رحيم عنيد, (2010) تأثير عوامل النجاح الحرجه في ادارة. المشروعات رسالة ماجستير ,كلية الادارة والاقتصاد /جامعة بغداد.
 - 9. نجم,نجم عبود, (2013) مدخل الى ادارة المشروعات ,جامعة الزيتونه الاردنيه.
- 10. نجمُ , نجيبُ عبُدُ المجيد, (2012) استراتيجية استخدام اساليب جدولة المشروع ,بيرت والمسار الحرج في المفاضله بين الوقت والكلفه لانجاز المشاريع ,المعهد التقني /الحويجه.

المصادر الاجنبية

- 11. Al-Shaabani, S. I. and Afram, M. A. 2010. The Accountancy Usage of Critical Path Model in Rationalizing the Maintenance Costs in Hammam Al-Alil Old Cement Factory, TANMIAT AL-RAFIDAIN, 2010, V.32, No. 99, Pages 9-30.
- 12. Dawood, L. N., AL-zubaidy, S. S. Mahmoud, M. A. 2012. Use of Critical path method inmaintenance planning of an electric power station, Engineering and Technology Journal, Vol. 30, No. 8, Pages 197-211.
- 13. Jawad. M. K., Kazem, A. J. 2020. Using the Critical Path Method (CPM) for scheduling the project (paving the Amil Sayid Al-Ayyam Street with a length of 1.25 km) In terms of Decresing the time. journal of Economics And Administrative Sciences, V(26), No. 120, P.127-145.
- 14. Kadim, B. S. 2014. Network analysis methods use in the control of production processes and reduce costs / case study in the General Company for Leather Industries, Al Kut Journal of Economics and Administrative Sciences, Vol. 1, No. 13, Pages 179-201.
- 15. Khalaf, W.S, Wah June, L., Abu Bakar, M.R.B. and Lai Soon, L. (2011). A Comparative Study on Time-cost Trade-off Approaches within Critical Path Method. Journal of Applied Sciences, Vol.(11), No.(6), pp(920-931).
- 16. Khalaf ,W.S. (2013) solving the fuzzy project scheduling problem based on a ranking function , Australian Journal of Basic and Applied Sciences, Vol.(7), No.(8), pp(806-811).
- 17. Khalaf, W.S and Salman, T. K. (2015). Project Scheduling By using Goals Programming An Applied Research In Modern Village Project (Residential Building Aspectin In Wasit Governorate). journal of Economics And Administrative Sciences, Vol.(21), No.(85), pp(169-201).

Scheduling a production line using the critical path method / a case study in the General Company for Electrical Industries

millimeter. Mona Shaker Salman/Middle Technical University/Technical Institute Essaouira/ Muna.shaker@mtu.edu.iq

Abstract

The project management faces challenges represented in the completion of the project, although it is subject to constraints related to time and financial resources allocated to the project, so this matter requires an accurate calculation of time and cost. order for the scheduled time and cost. On this basis, the project was studied again according to modern scientific and mathematical methods, using the critical path method (CPM) to find the order completion time and its cost, depending on one of the ready-made efficient programs, which is (WinQSB2). electrician, at a cost of (152,000,000) million dinars. The time and cost of completing an order for the production of 2000 electric heaters in the General Company for Electrical Industries, based on personal experience and simple mathematical methods, and according to the data taken from the planning department in the company, was (300) days and at a cost of (190,000,000) million dinars, and compared to the results obtained using Critical Path Method (CPM) We conclude that the proposed method has proven its efficiency and sobriety in scheduling activity times as well as reducing the order completion time by (43) days and reducing the cost by (38,000,000) million dinars than planned in the company.

Keywords: critical path method (CPM), project scheduling, (WinQSB2) software

