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Abstract 
   Logistic regression is an important statistical tool for modeling a set of 
independent variables that effect in a binary response variable.  Most 
practitioners of statistics have used logistic regression in many scientific 
areas. Unfortunately, they are not aware that the method of estimation 
logistic regression breaks down in the presence of outlying data point(s) in 
the original dataset. The objective of this paper is to bring out the attention 
of respectful researchers in various scientific areas to single logistic 
regression diagnostics methods, and the effect of the presence of outliers 
on logistic regression estimates. Real data are considered in this paper 
and the results show the high performance of diagnostic methods to 
detect these observations that are affected on the logistic regression 
estimates.  Some graphs are discussed and supported the results of 
diagnostic method the influence of outlying data point on the fitted logistic 
model. 
  

1. Introduction 
    Regression analysis gives all observation  equally  role to determine 
the regression equation and subsequent conclusions ( Chatterjee and 
Hadi,1988). In the real world of data,  this assumption may be violated in 
the presence of outlying data points.  The presence of such data points 
results in a breakdown of the traditional methods of logistic regression 
estimates.  A huge efforts have been done in the literature to classify 
these data points and the remedy their influenced.   Rousseeuw and 
Leroy (1987) pointed out that, the outlying data points have to be 
identified, and then either correct by using robust weight functions or trim 
it from the dataset. Many researches have been carried out and 
proven that outlying observations have unduly effect on the 
parameter estimates in linear regression (Midi et al., 2009).  Indeed, it 
is undesirable that even a good quality data cannot be avoided of 
having 1 to 10 percent of outlying observations (Hampel et al., 1986). 
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Thus, many diagnostic methods have been developed to identify 
these outlying data points.  
   Generally, there are three types of outlying data points, outlier, leverage 
point and influential observation. The outliers is defined as the data 
points which are far from the bulk of predictors (Rousseeuw and Van 
Zomeren,1990). It is an extreme observation  even though the 
extremeness can be positive or negative residual.  High leverage 
points are the observations which are far removed from the main 
body of points in X space (Chatterjee and Hadi, 2006). Belsley et al. 
(1980) defined an observation to be influential if it is one, which either 
individually or together with several other observations, has a 
demonstrably larger impact on the calculated values of various estimates 
than is the case for most of the other observations.  In the following 
sections, some famous diagnostic methods for identification of 
outlying points in the literature of logistic regression will be discussed. 

  
 

3. Logistic Regression  
   In several statistical applications, a set of variables of linearity is 
associated with a classifier that can represent a binary response 
variable, that by taking one value either 1 or 0. The binary response 
to dichotomous classification is quite common in many scientific 
studies. Logistic regression is often appropriate for such data 
because its fitted values will be inside the permitted range of binary 
responses that are bounded by only two values 0 and 1.  

     Let  𝐲𝐢 be a dichotomous response is influenced by a linear 
combination of independent variables, 𝐗𝐣, where 𝑖 = 1,2, … , 𝑛 and 𝑗 =

1,2, … , 𝑝, the logistic regression model is recommended to overcome 
for fitting this problem. It is well known that the ith case of 𝐲𝐢 follows 

Bernoulli distribution with probability 𝜋𝑖 = 𝑝(yi = 1|𝑋𝑗) and [1 − 𝜋𝑖] =

𝑝(yi = 0|𝑋𝑗) for success and failure classes, respectively and 0 ≤

𝜋𝑖 ≤ 1 When 𝐲 be a vector of size 𝑛 × 1 of  binomial distribution, 
Bin(𝑛, 𝜋𝑖), the vector of probability estimates 𝜋𝑖 is non-linear. Berkson 
(1944) transformed the relationship between the response function 𝜋𝑖 
and 𝐗𝐣 to linear relationship as follows,  

ln[𝜋𝑖/(1 − 𝜋𝑖)] = 𝛽0 + ∑ 𝑋𝑗
′𝛽𝑗

𝑝
𝑗=1           (1) 

    where 𝛽0 is the intercept and 𝛽𝑗 is a 𝑝 × 1 vector of unknown 

regression coefficients and 𝜋𝑖 is the response function can be written 
as follows,  

http://doi.org/10.31272/JAE.42.2019.119.


The Journal of  Administration & Economics / year 42/No 119/2019 

ISSN : 1813-6729     http://doi.org/10.31272/JAE.42.2019.119.5 
 

(69) 

𝜋𝑖 =
𝑒

𝛽0+∑ 𝑋𝑗
′ 𝛽𝑗

𝑝
𝑗=1

1+𝑒
𝛽0+∑ 𝑋𝑗

′ 𝛽𝑗
𝑝
𝑗=1

                        (2) 

 

   The coefficients of model (1) can be estimate iteratively by 
maximizing the logistic regression likelihood function which is defined 
as : 

𝐿(𝛽; 𝑦𝑖) = ∏ 𝜋𝑖
yi𝑛

𝑖=1 (1 − 𝜋𝑖
1−yi)                               (3) 

𝐿(𝛽; 𝑦𝑖) = ∑ {yi 𝑙𝑛(𝜋𝑖) + (𝑚𝑖 − yi) 𝑙𝑛(1 − 𝜋𝑖)}𝑛
𝑖=1     (4) 

   Differentiating equation (3) with respect to 𝛽 yields, ∑ (yi −𝑛
𝑖=1

𝑚𝑖𝜋𝑖) = 0 and ∑ 𝑋𝑖𝑗(yi − 𝑚𝑖𝜋𝑖)𝑛
𝑖=1 = 0, these equation can be solved 

iteratively either using Newton-Raphson method or IRLS to get 𝛽̂. 
 

 

4. Single diagnostics of outlier 
    Consider 𝝅̂𝒊 is the estimated values of  actual probabilities, the ordinary 
residuals may define as the deviation between  𝝅̂𝒊 and 𝐲𝐢 ,  𝝐𝒊 = 𝒚𝒊 − 𝝅̂𝒊 
such that,  
 

𝛜 = {
𝟏 − 𝝅̂𝒊 , 𝒚 = 𝟏
−𝝅̂𝒊     , 𝒚 = 𝟎

 

   The ith case of 𝝐𝒊 follows Bernoulli distribution with probability 𝛑𝐢.  
consequently, the errors distribution is binomial and its variance is a 

function of the conditional mean as  𝐕̂(𝐘|𝐗) = 𝝅̂𝒊(𝟏 − 𝝅̂𝒊) where the 
values of the independent variables for each observation is unique. When 
it is not unique,  the errors distribution is binomial and its variance is 

equivalent to  𝐕̂(𝐘|𝐗) =  𝒎𝒊𝝅̂𝒊(𝟏 − 𝝅̂𝒊), where 𝒎𝒊 is the number of 

observations with the same values of 𝑿𝐣 as observation.  Hosmer and 

Lemeshow (2000) proposed person residuals as alternative to ordinary 

residuals by dividing them by  √𝒎𝒊𝝅̂𝒊(𝟏 − 𝝅̂𝒊). 

    The Pearson residual defined for the ith covariate pattern is given by 

𝒓𝒊 =
𝒚𝒊−𝒎𝒊𝝅̂𝒊

√𝒎𝒊𝝅̂𝒊(𝟏−𝝅̂𝒊)
, where   𝒊 = 𝟏, 𝟐, … , 𝒏. the square of 𝒓𝒊 has related to 

Pearson chi square test statistic, due to the  𝒓𝒊
𝟐 measures the contribution 

of 𝐲𝐢 to the Pearson chi square goodness of fit statistic Hosmer and 
Lemeshow (2000). Unfortunately, with such as binary data chi-square test 
statistics does not follow an approximate of chi-square distribution without 
replicates ( Sarkar et al., 2011 ).  

A seriously problem arises where the variance of  𝝐̂𝒊 calculated, since the  
𝝐̂𝒊 = 𝒚𝒊 − 𝝅̂𝒊 ≈ (1 − ℎ𝑖𝑖)yi , hence the variance of the residual is given by 

𝑉( 𝝐̂𝒊) = (1 − ℎ𝑖𝑖)𝜋̂𝑖(1 − 𝜋̂𝑖). It is obvious that 𝑉( 𝝐̂𝒊) dose not have unit 
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variance and consequently the variance of Pearson residuals is not 
constant. 
 

4.1 The Studentized Pearson residuals 
    The Studentized Pearson residuals has been proposed in the literature 

by dividing 𝑟𝑖 by the standard deviation which is approximate as 

√𝜋̂𝑖(1 − 𝜋̂𝑖)(1 − ℎ𝑖𝑖),where 𝐻 = √𝑉̂𝑋(𝑋′𝑉̂𝑋)
−1

𝑋′√𝑉̂ and ℎ𝑖𝑖 is ith 

diagonal element of Pregibon leverage 𝐻 which is so called hat matrix. 

The Studentized Pearson residuals spriare defined as  

spri = 𝑟𝑖 √(1 − ℎ𝑖𝑖)⁄  

and the ith observation associated |𝑠𝑝𝑟𝑖| > 3 are generally identified as 
outlier.  
Draper and John (1981)   pointed out that the approach of row deletion of 
influential data points and then examine it effects on the estimates shows 
deletion the clean observation with small residual has most influential than 
the outlier with large residual on the parameter estimates. 
 
 

5. Single diagnostics of leverage point 
    A large body in the literature has been done to measure the influential 
observation in X-direction of linear regression model.  The detection high 
leverage point such as  mahalanobise  distance , twice-the-mean rule 
(Hoaglin and Welsch,1978), thrice-the-mean rule (Vellman and 
Welsch,1981) and others that are based on leverage point which 
measures the distance of a covariance pattern from the mean 
(Imon,2006). Such as these methods are impracticable in logistic 
regression where the most outlying data points in X-direction may have 
the smallest leverage. 
In the setting of logistic regression,  Pregibon (1981) introduced hat matrix 
to measure the leverage points in the independent variables as follows,  

𝐻 = 𝑉̂1/2𝑋(𝑋′𝑉̂𝑋)
−1

𝑋′ 𝑉̂1/2                                          (5) 

    Another approach is proposed by Imon (2006) based on a quantity that 
measures the distance of each covariance pattern from the mean. He 
estimated the probability of  each covariate pattern for general logistic 

regression model  𝑦 = 𝜋(𝑋) + 𝜖 as follows, 
 

𝜋̂𝑖 =
𝑒

𝛽̂0+∑ 𝑋𝑗
′𝛽̂𝑗

𝑝
𝑗=1

1 + 𝑒
𝛽̂0+∑ 𝑋𝑗

′𝛽̂𝑗
𝑝
𝑗=1

 

    𝛽̂ is computed by equation (4), and then the fitted values of the ith 

covariate pattern is calculated as  𝑦̂𝑖 where, 
𝑦̂𝑖 = 𝜋̂𝑖 
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The  general element v𝑖 =  𝑚𝑖𝜋̂𝑖(𝑥𝑖)[1 − 𝜋̂𝑖(𝑥𝑖)] can be founded and 
employed with the diagonal element of the hat matrix  which is defined 
in(5)  

ℎ𝑖 =  𝑚𝑖𝜋̂𝑖(𝑥𝑖)[1 − 𝜋̂𝑖(𝑥𝑖)]𝑥𝑖
′(𝑋′𝑉̂𝑋)

−1
𝑥𝑖 

    The observation that possess  ℎ𝑖 > 2𝑝/𝑛 are generally identified as 
high leverage point.  Indemnification of high leverage values is crucial 
due to their responsibility for masking and swapping outliers  ( see, Peña 

and Yohai,1995)  . Jennings (1986) shows that  the leverage value ℎ𝑖 >
2𝑝/𝑛 is closely related to the 𝜋̂𝑖, therefore, he considered the ith 

observations are high leverage points if their corresponding 𝜋̂𝑖 ∈ [0.1,0.3] 
and/or belong to  [0.7, 0.9]..  
 
 

6. Cook’s distance 𝑪𝑫𝒊  
    Nurunnabi et al. ( 2010) defined the outliers and influential 
observations in logistic regression may occur as result of 
misclassification between the binary responses. This may occur due 
to meaningful deviation in explanatory variables. He rewrite the 
formula of Cook distance (Cook,1977) to be suitable with logistic 
regression setting as follows, 

𝐶𝐷𝑖 = [(𝛽̂(−𝑖) − 𝛽̂)
′
(𝑋′𝑉̂𝑋)(𝛽̂(−𝑖) − 𝛽̂)] 𝑘⁄ 𝜎̂2,      𝑖 = 1,2, … ,3                (6) 

    where 𝛽̂(−𝑖) is the estimated parameter of  with the ith observation 

deleted, 𝑘 = 𝑝 + 1. 
The cutoff point that is used in this paper is formulated as follows,  

𝐶𝑟𝑖𝑡 =
ℎ𝑖𝑖

1 − ℎ𝑖𝑖
× 𝜒0.95

2 (1) 

    The ith observation is considered as influential observation where 𝐶𝐷𝑖 >
𝐶𝑟𝑖𝑡   
    It is well known that Cook’s distance  measures the distance between 
least square estimates based on full sample size and the estimate that 
obtained by deletion the ith observation. Many researchers in robust 
statistics literature expressed  Cook’s distance  in terms of the ith 

DFFITS,Standardized Pearson residual spri and leverage points ℎ𝑖𝑖.  
    Belsley et al. (1980) defined the influential observations as points 
that have a demonstrable impact on the various estimates and  
introduced DFFITS that defined as               

 DFFITS𝑖 =
𝑦̂𝑖−𝑦̂𝑖

(−𝑖)

𝜎̂(𝑖)√(1−ℎ𝑖𝑖)
̂  ,   i = 1, 2, ..., n                           (7) 

    where 𝑦̂𝑖
(−𝑖)

 and 𝜎̂(𝑖) are respectively the ith fitted response and the 

estimated standard error with the ith observation deleted.  
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    Nurunnabi et al. (2010) expressed the DFFITS formula in (8) for 

logistic regression in terms of  Sudentized Pearson residuals spri and 
leverage values ℎ𝑖𝑖  as 

 𝐷𝐹𝐹𝐼𝑇𝑆𝑖 = 𝑠𝑝𝑟𝑖√
ℎ𝑖𝑖 𝜋̂𝑖(1−𝜋̂𝑖) 

(1−ℎ𝑖𝑖) [𝜋̂𝑖(1−𝜋̂𝑖)](−𝑖)  , 𝑖 = 1,2, … , 𝑛   (8) 

    Where the observation possessing  𝐷𝐹𝐹𝐼𝑇𝑆𝑖 > 𝑐√𝑘 𝑛⁄  is generally 

identified as an influential observation. 

The numerator  of (6), [(𝛽̂(−𝑖) − 𝛽̂)
′
(𝑋′𝑉̂𝑋)(𝛽̂(−𝑖) − 𝛽̂)] equivalents to 

(
𝑦̂𝑖−𝑦̂𝑖

(−𝑖)

√(1−ℎ𝑖𝑖)
̂ )

2

which equals to  DFFITS𝑖
2 𝜎̂(𝑖)

2  , therefore the Cook’s 

distance in terms of DFFITS can be expressed as  

𝐶𝐷𝑖 =  DFFITS𝑖
2 𝜎̂(𝑖)

2  𝑘⁄ 𝜎̂2                                       (9) 

Another relationship has been proposed in literature by using  

Standardized Pearson residual spri and leverage points ℎ𝑖𝑖 as follows,  

 𝐶𝐷𝑖 =
1

𝑘
(spri)

2 (
ℎ𝑖𝑖

1−ℎ𝑖𝑖
)                                           (10) 

 

7. PimaIndians Diabetes 
    To investigate the performance of single diagnostics method, the  
PimaIndiansDiabetes dataset is considered. The original version of 
this data contains 768 observations on 12 variables, but it is  
corrected by removing several physical impossibilities values which 
are considered as missing data. For more  details see  Wahba et al 
(1995) and Ripley (1996). 
    First, Fig 1 shows the investigation of the difference between 
observed and fitted value by using  marginal model plot. The 
dependent variable (diabetes)  is plotted against independent 
variables. The observed data and fitted value are shown in solid and 
long dash lines, respectively. It is obvious that blood pressure, 
triceps, insulin and  body mass index fit poorly. Consequently, the fit 
is not support the entire set of independent variables patterns.  Due to 
that the diagnostics regression is required to detect the outlying 
observations that have significant impact on the model. 
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Figure 1 

Marginal model plot drawing response variable against each 
predictors and linear predictor 

 

   Figure 2 shows the observations indexed 7 and 229 , respectevly, 
are most likely outliers by using  studentized pearson residual 
method, Bonferonni P value confirms only the observation 229 is 
influenced outliers. Note that, sometimes the detection method of 
outliers identifys some observation as outliers but it is not, such as 
this observation is called swapping.  
   The results  of cook distance to measure the influence of 
observations are present in Figure 2 and the observations 229 and 
745 are identified as influential observations. The diagonal elemrents 
of hat matrix in the Figure 2 diagnoses two observations are leverage 
points which indexed  29 and 255, respectevly.   
   To  examine the change of coefficient that may be happen as a 
result to the presence of outlying observations ( two  influential 
observations (229, 745) and two leverage  
   points (29,255) and two outliers (229,7) ) two models (Model 1 and  
Model 2) are considered with  and without  these outlying 
observation, and then estimates of each model are compared. 
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Figure 2 

Diagnostic plots combining Cook’s distance, Studentized residuals, 
Bonferonni P and hat-values. 

 
 
 
 
 
 
 
 
 
 

 
Figure 3 

the diabetes observed data (solid line) and linear predictor (fitted 
value; long dash line) for the Model 2 
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Table 1 

Displays the estimates of logistic regression of  Model 1 and  Model 2  
Variable Model 1 Model 2 

Variable Estimate Standard Error Estimate Standard Error 

Intercept -8.87 1.17 -9.60 1.23 

glucose 0.039 0.006 0.041 0.006 

pressure -0.004 0.012 -0.004 0.012 

triceps 0.015 0.017 0.016 0.018 

insulin -6.48E-04 1.36E-03 -4.06E-05 1.40E-03 

mass 0.063 0.027 0.064 0.028 

pedigree 1.017 0.439 1.449 0.464 

age_bucket31-40 0.854 0.377 0.982 0.385 

age_bucket41-50 1.575 0.520 1.488 0.534 

age_bucket50+ 1.384 0.637 1.200 0.656 

preg_bucket10+ 0.828 0.767 1.411 0.838 

preg_bucket6–10 -0.243 0.420 -0.243 0.428 
 

   As can be seen from Table 1 that coefficients of insulin, pedigree 
and preg_bucket10+are influenced after deletion the outlying 
observations. It is clear that the plot of diabetes (response variable) 
against  linear predictor in  Figure 3  is better than the one which has 
been presented in Figure 1. As Figure 3 shows the solid line of 
observed data of diabetes matches the long dash line of fitted values, 
while in Figure 1 both lines are not matches. However, the conclusion 
of  deletion the observation 229 improves the model fitting, so it is 
identified an  influential observation. 
 

7. Conclusion  
   The main purpose of this  paper  is to describe the single logistic 
regression diagnostics methods  and  to give it the attention of 
researchers. The diagnostic method of outlying observation is presented, 
and then real data are considered. The results show the high 
performances of diagnostic  methods to detect the outlying observations. 
The plots have been confirmed the correct identification of outliers, 
leverage points and influential observations by these methods. Outliers 
and leverage point individually are fare away from block of data. Both may 
be configured the influential observation but vice versa in not correct.   
When influential observation is dropped from the model, there will be 
a significant shift of the coefficient and regression line.  
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