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Abstract

In this research, the researcher has derived different standard Bayes
estimators for scale parameter of Exponential distribution by using
balanced and unbalanced loss function. This estimation includes two
cases availability and lack of primary information (Jeffery and Gamma
conjugate priors) about the phenomenon studied. Simulation
experiments with different sample sizes and virtual parameters have
been built for this purpose, then a comparison is mads between these
estimators depend on the Mean Square Error (MSE) criteria. The results
have demonstrating the superiority of balanced loss functions in the
absence of prior information about the phenomenon studied, while they
may not have the same efficiency if availability of prior information about
this phenomenon is cannot found.
Keywords: Exponential Distribution, Bayes Method, Balanced Loss

Functions .
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1- Introduction & aim:

The exponential distribution is one of the important and commonly
used distributions in studies that deal with the failure‘s times, survival,
and waiting queues. Many researchers have dealt with estimation
process for this distribution by using Maximum Likelihood method, which
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is based on the observable data. (Until the advent of Bayes method,
which relyies heavily on the prior distributions and loss functions) .In this
area, (Al-Kutubi, 2009) was employment an extension Jeffery prior
distribution to estimate the exponential distribution parameter,
furthermore, proposed a new loss function by using simulation.
(Oayd, 2012:1) compared the estimators of the Bayes method for the
parameter and reliability and failure rate of Rayleigh distribution using
balanced and unbalanced loss functions. The main problem of estimating
process with Byes method lies in the absence of primary information
about the phenomenon studied, which always leads us to resort to the
non-informative prior. This prior may not always give us the best
estimation. Therefore, this research aims to avoid this problem through
dealing with the balanced loss functions, and to achieve to our aim we
focus on Bayes method using simulation study to estimate the
exponential distribution parameter under balanced and unbalanced loss
functions, different known priors have been use, and then comparing
these estimators based on the (MSE).

2- Standard Bayes Method:
Let (z,,2,, ...,Z,) be a random sample of size (n) from Exponential
distribution, and then the probability density function f(z; a) is:

[ ={3" @z>0 &)

And the cumulative function for (z) can is:
F(z; a) =PT(ZSz)=ff(Z)dZ=1_e—az @

0
The standard Bayes method assumes that the parameters to be
estimate are random variables, this parameter should be present in a
probability density function known as prior distribution, then by combining
the Likelihood function and this prior by using the Bayes inversion
formula we can obtain a probability density function called the Posterior

distribution, according to the following formula:

falh = —ED/@ 3
Jyo L(zl) f(a)da

Where:

L(z|a) : likelihood function for sample z, ,z,, ..., z, .

f(a) : Prior distribution .

f(alz) : posterior distribution.

The likelihood function for can evaluate as:

(109)


http://doi.org/10.31272/JAE.42.2019.119.

The Journal of Administration & Economics / year 42/No 119/2019
ISSN : 1813-6729  http://doi.org/10.31272/JAE.42.2019.119.8

n

L(z4, 2, ..., Zyp|@) = (zila) = a e~ @lisaZi = g g~ @ L1z 4
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2-1 Prior Distributions:

Priors can be divided into two types according to the abundance of
primary information as:
1- Non-Informative Prior:

If there is no sufficient initial information about the estimated
parameter, or not yet available, the prior distribution can be selected
depending on the Jeffery’s formula that is based on the parameter’s
zone(a). Since the parameter field is positive(0, ), then we can find the
prior distribution by using either Regular Logarithmic distribution follow:
a- Regular Logarithmic prior:

This prior distribution can be define as:

1 ¢
X —=— ,a>0 5
fr(@) . c,a (5)
Where c is a constant.

b- Fisher information prior:
Fisher information I () is definitely as:

fq(a) x/I(a) =c.yI(a) ,cisaconstsnt (6)
(@) = —nE 0?Inf(z;a)] n ;
(@ ==k || = 2 @
Substitute (7) in (56 we get the Fisher information prior distribution:
fol@=c. g ®

Note that we will assume that c=1.

2-Informative Prior (Conjugate Prior):

Conjugate prior is a known specific and appropriate probability
function of the parameter, thus the conjugate prior for exponential
distribution follows the Gamma distribution with parameters (6, ), and it
has the following p.d.f:

6
fo(a) = {% allepa ,6,8,a>0 9)
0 o.w
2-2 Posterior Distribution:
The posterior distribution for the parameter (a) that is identified in (3)
differs according to the prior distribution that used. It can be evaluate by
using the three mentioned priors as follows:
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1- Regular Logarithmic distribution posterior f,.(a|z), compensating (4)
and (5) in (3), as follows:

f( 2 a-lam e—aZ?zlzi a@D e—aZ}lei
r a|lzZ) = n = %) n
o I (-1) - A%, 2; g
[y S i PR
Since:
f a(n_l) e_az?zlzi da = r(n) -
0 (Z l)

WhereI'(n): represent Gamma function,I'(n) = (n — 1)! then:
n—1 e—azln:lzi
fr@l2) = e —
QL iz
(Z 1 l)n n-1 _azﬂ_ Z:
fr(alz) = F( ) a™ e = (10)
2- Fisher information posterior f,(a|z), by compensating (4) and (8) in
(3), as follows:

Vn

£ (alz) = c— a” e~ @ ZizZi cvn a® D g-aliyzi
q a|\zZ) = = o — _ no,.
fooc£ am e —aylh, 7 dat C\/EIO a®m-1) ¢ aYi,zi da
(n 1) ,—a¥l. z;

a e~ ®li=17i
fQ(alz) - J-Ooo a(n—l) e_a2?=1zi dot
but [ a®V e X% doa = - then:
ut [« c A=

n-1 ,—aXi,z;
folaln) =

Q=1 z)"

(Zl 1Zl)n 1 .— n .

fq(alz) F( ) Tl e azl:lZl (11)

Since we assume that c=1, that leads us to f,(alz) = f,(a|z), so we
will refer to the two non-informative priors as f; (a|z)
3- Gamma conjugate prior can be used to find the posterior distribution
fo(alz), by substitute (4), (9) in (3) as follows:

ﬂ 6 1 ,-Ba ,n aZL z;
F(@) e a’ e 1

w B9
Jo F[ée) af-te-Ba gn e~ %LimZidg

folalz) =
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0
%a"*e‘l e~ @(B+Eizy z) QM1 - a(B+I, 2

fz((XlZ) = 0
@y le @0 e S da

= f0°° qnto-1 e_a(ﬁ"'z?:lzi) da

since f at0-1 o= a(B+Xis12) g = [(n+0) , then:
0 ) (B + Xy 2™
n n+
f2(alz) = (B + Liz120) qt0-1 o= a(B+L,2)
I'n+6)
2-3 Loss Functions:

The loss function is one of the measures of accuracy in the Bayesian
estimation process, loss function is defined as the amount of loss
resulting under Bayes decision around unknown parameter. It is a
measure of the difference between the estimated value and the real value
of this parameter, i.e., (@ — «) it should have a real non-negative value and
it is usually symbolizedL(g, ).

A mathematical expectation of the loss function is called the Risk
function and the amount that makes this risk function is known as
minimum as possible is the standard Bayes estimator (ag) for the
parameter(a) , (dg) can be calculate as follows:

(12)

ag = Risk(a,a) = E{L(@,a)} = f L@ a)f(a|lz)da (13)
Va
2-3-1 Unbalanced loss function:

Typically, loss functions are classified according to symmetry criteria
into two main types: the first one is a Symmetric loss functions that
supposed that the amount of loss achieved in the positive direction is
egual to the amount of loss achieved in the negative direction, in the other
word{L(a@, «) = |& — a|}. The Squared Error loss function is one of the
most common symmetric loss functions, (sometimes called a Quadratic
loss function). It is define as:

L(&,a)=v(ad —a)?

Almost researchers are assuming thatv = 1, then the quadratic loss
function will become
L(@,a)=(a—-a)? (14)

Now , it is possible to obtain a standard Byes method estimator for (a)
and under the error loss function (ags) through (13):

@ps=R@a)=E@-a)?= J(c’f —a)? f(alz)da

Va
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@ s = E(a|z) = f o f(alz)da (15)

Ya
The second type of loss functions is called Asymmetric loss functions,
in this type we assume that the positive and the negative directions
amount of loss under Bayes decision are not necessary to be equal
between, one of these functions is the Entropy loss function, which is
known as the following:

L(@ a)—(—) Ln( ) 1 (16)
Where the standard Bayes estimator under the entropy loss function
(& gg) for the parameter (a) obtained as:

bure =2 {(2)-n(E) 1)« [{(E)-1n(2) e

Va

-1
app=I[E(a™|2)]' = {J a‘lf(aIZ)da} 17)
Va
2-3-2 Bayes estimators under unbalanced loss functions:
Now we will find Bayes estimators under unbalanced loss functions
sequentially as follows:
1- Using equations (10), (15), to find a Bayes estimator with quadratic
loss function and Logarithmic prior (& gs1):

@ ps1 = E(alz) = f afi(alz)da = Qi z)" aa®le ®Ti=1Zidg
o " T'(n)
(Zi=1zi) n azn
o = - i=1Zi
BS1 Tn) e da
From Gamma, function properties:
n,—ay; 1z
f ae 1Zida = oz
0
~ (Z Zl)n r(n + 1) n
o gs1 = = = (18)

T z0™! 3,z
Clearly, that (& gg1) is equal to the MLE.

2- From equations (10), (17) we can obtain Bayes estimator under
Logarithmic prior and unbalanced Entropy loss function (& ggq):

o) -1

&pp1 = [E(a12)] " = { f a‘lf(aIZ)da}

0
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-1

(Zl 1Zl)n _1 n-1,-aXr,z;
{ F(n) a'> ‘e =1Zidqg

-1

S 4 Z: n
A pp1 = {—(Z{:(ln)l) a 2e” “Zi=1zida}

Since f a2e" @Xic1Zidg = % then:
1Z;
~ (Z ]_Zl)n F(Tl— 1) _ Zi:lzi -1 3 n—-1
QX pp1 = { I'(n) (Z?:lzi)"_l} = {n— 1} T Yz (19)

3- The Bayes estimator under conjugate prior and unbalanced quadratic
loss functions(& gs3) can be pediment by using equations (12),(15):

@ sy = Ealz) = j & fo(alz)da

+0
f (B+Yi1z)" n+0-1 o— a(B+3i212) g

I'n+0) aa
n+o -

a gy = & ‘;(21:; ;ZB)) f at® e~ aB+Xit17) o

0
_ B+XLz)"™? T(n+60+1)
a = )

B2 r<n9+ 0) (B+Xi, z)ntoH
n+

a = 20

BS2 ﬁ + Z?=1 Z; ( )
4- From equations (12), (16), it is easy to drive Bayes estimator under
conjugate prior and unbalanced Entropy loss function (& ggz) as

follows:
-1

@z = [E(f (a1 | )] = f a f(alz)da

Va

0
_ {f (B -lll({:; :Zel))n-l- alagttt1e- a(f+Yi-12i) da}

-1

n+o
. {(ﬂ e da}
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. _[BAEELz)™ T(n+6-1) B
QA pg2 = { T(n+0) B+ X, z)mto L }

~ {(ﬁ + Xie1Z0) }_1

YBE2 T 1Tt e —1)
_n+0—1 1)

2-3-3 Balanced loss function:

The symmetry criterion that is described above is not the unique
criterion by which loss functions are categorized, but there is another
more comprehensive criterion put down by (Zellner, 1994), which is the
Balanced criterion or equilibrium criterion. The objective of achieving
equilibrium in the loss function is to increase accuracy and conformity in
the estimation process. The loss functions that are discussed above are
consider an unbalanced loss function.

Apart from the symmetry criterion, the loss function can be a balanced
according to Zellner’s formula as follows:

LL,w,ao(&,a):wL(éi,ao)+(1—w)L(o?,a) (22)

Where:

L, (@,a) : Balanced loss function.

w: weighted coefficient,w € (0,1).

a, -Primary estimator for the parameter (a)depends on the observations.
L (a@,a) : Unbalanced loss function.

L (&, ay) : Unbalanced loss function for the Likelihood function.

Clearly that the balanced loss function heavily depends on the
weighted coefficient (w), and the initial estimator(ey).

Lemma:

For estimating (a) under balanced loss function L, and for a
prior(a) , the Bayes estimator dependson L (&@,a ) and f*(a|z) , where:
falz) =wg (@) + (1 —w) E{f(a |2)} (23)

According to the above lemma, the Bayes estimators using balanced
loss function are different from the Bayes estimators using unbalanced
loss function, because f*(a|z) is difference from f(«a|z), actually,
f*(al|z)is a mixture of (ay) and f(a | z).
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2-3-3 Bayes estimators under balanced loss functions:

The general formula of the balanced quadratic loss function based on
the equation (15) will be computed as:
Lrye,@a)=wL(@—ay) +1-wL(@-a)

When (w = 0), i.e., there are no differences between Bayes estimators
under the balanced and unbalanced loss functions. Now for finding the
Bayes estimators we can depend on the previous lemma as:

@ pps = Ef-(alz)
@ pps = Wo, (@) + (1 —w) E{f(a | 2)} (24)

Also for balanced entropy loss function estimator is based on the
equation (16) and previous lemma will be:

~ _ -1

& ppp = [Ef*(“ 1) 2)]

~ — _ -1

@ ppr = [Wao (@) + (1= w) E{f(a 7" | 2)} | (25)
From the equations (4), (18), (19), (24) and (25), one can get the

following different Bayes estimators under the balanced loss functions

and non-informative prior:
1- Bayes estimator under balanced quadratic loss function(& ggs2):

. n n—-1
a pps1 — W sn o + (1 - W) on o (26)
i=1Zi i=1Zi
2- Bayes estimator under balanced entropy loss function (& ggg2) :
- _11-1
R n ! n-2)"
@ ppp1 = (W \on + (A -w)is (27)
i=1Zi i=1Zi

Moreover, from equations (4), (20), (21), (24) and (25), we get the
following different Bayes estimators under the balanced loss functions
and Gamma conjugate prior:

1- Bayes estimator under Conjugate prior and balanced quadratic loss
functions(& ggs2) :

R n n+0

ons = (gt 0 ) .
2- Bayes estimator under balanced entropy loss functions(& ggg3) :

N n )7t n+o-1)1"

we= s {57 +o-wiiiea) |

(116)
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3- Simulation and results:

In this simulation study, we have chosen samples sizes (n = 10,25,50,100),
several parameter values (a = 10,2,1,0.2), also (6 = 2,8 = «), also we select
(w = 0.5) in order to override the aligned in the estimation process ,i.e.,
this weighed value will give the same loss to the initial estimator and
Bayes estimator in their customize formulas. The number of replications
used was (K=1000). The simulation program written by using (R3.5.1)
program. After the parameter estimated, the Mean Square Error (MSE)
calculated to compare between estimators, where:

£,(0,-0)° 0

- (30)

The results of the simulation study are summarized and tabulated in
table (1) and (2). These tables include parameter estimators, (MSE) of
these estimators respectively, that is for all sample sizes and () values.
It is obvious from these tables:

1- The estimated values of the parameters are very close to the real
values as the sample size increase.

2- When (a) is increasing: the estimated parameter values will pull away
from the real values.

3- In the case of the non-informative prior, the estimated values of the
parameter under the balanced loss functions are closer to the real
values than these estimators that are estimated by the unbalanced
loss functions, but the opposite is true in the case of the conjugate
prior.

4- The (MSE) decreases as sample size increases.

5- The (MSE) increase, when (a) increase.

6- The balanced Bayes estimators with the non-informative prior gives
smaller (MSE) values than the unbalanced one.

7- In the case of the conjugate prior, the unbalanced Bayes estimators
have smaller (MSE) values than that the balanced one have.

4- Conclusions:

We conclude through the experimental part results that the balanced
loss functions provide an efficient Bayesian estimator in the absence (or
if it is having little information) of information about the studied
phenomenon, i.e., in the case of Jeffery prior or non-informative prior.
While in the case of the conjugate prior, balanced loss functions may not
be as efficient.

MSE(&) =

(117)
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Table (1)
Parameters estimated of exponential distribution
Q, B n 6851 aBBSl (iBEl aBBEl aBSZ (’X\BBSZ (’X\BEZ (’X\BBEZ
10 0.1217216 0.11563552 0.136936799 0.12324312 0.099624533 0.104586986 0.108681309 0.109115374
25 0.124128161 0.121645598 0.129525038 0.124344036 0.114039847 0.116601441 0.118425995 0.118794515
ot 50 0.10735369 0.106280153 0.109590225 0.10739842 0.103083284 0.10414495 0.105104525 0.10515557
100 0.107274759 0.106738385 0.1083694 0.107285706 0.105100011 0.105651012 0.106140606 0.106171309
10 0.634151472 0.602443898 0.713420406 0.642078365 0.517280271 0.544008298 0.56430575 0.567521037
25 0.601444212 0.589415328 0.62759396 0.602490202 0.553135596 0.56526102 0.574410042 0.575898243
0 50 0.590509727 0.58460463 0.602812013 0.590755773 0.566057243 0.572378 0.577156 0.577928
100 0.51623197 0.51365081 0.521499643 0.516284647 0.505951 0.50851 0.51096 0.511015
10 1.508920699 1.433474664 1.697535786 1.527782207 1.215023857 1.286526243 1.325480572 1.3417546
25 1.149113 1.12613036 1.19907403 1.151111069 1.05847047 1.080809289 1.099180873 1.10116449
! 50 1.059284969 1.048692119 1.081353406 1.059726338 1.017403144 1.027751207 1.037352 1.037726
100 1.075467413 1.070090076 1.08644157 1.075577154 1.05363994 1.059176339 1.064072019 1.064392379
10 5.682602878 5.398472734 6.392928238 5.753635414 5.095285492 5.104814041 5.103947809 5.1091452
25 5.314219249 5.207935 5.54527226 5.323461 5.02004674 5.06084861 5.097740846 5.099695662
> 50 5.556690528 5.501123623 5.672454914 5.559005815 5.332266074 5.388911396 5.436820311 5.441188514
100 5.380825631 5.353921503 5.435732015 5.381374694 5.271585661 5.299301518 5.323779579 5.325398476
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Table (2)
MSE of estimated parameter of exponential distribution
Qa, B n aBSl aBBSl aBEl (X\BBEI (X\BSZ a\BBSZ (iBEZ &\BBEZ
10 0.001671936 0.001444577 0.002564435 0.001740351 0.001200249 0.00122114 0.001275473 0.001283198
25 0.001150161 0.001036525 0.001439721 0.001160625 0.00076511 0.000843601 0.00090751 0.000921227
o 50 0.000275445 0.000260809 0.000313341 0.000276105 0.000230875 0.000238549 0.000247425 0.000247949
100 0.000165711 0.000158195 0.000182836 0.00016587 0.000138799 0.000144723 0.000150496 0.000150874
10 0.050570613 0.043068748 0.078122265 0.052760257 0.032872603 0.034510726 0.036709225 0.037133086
25 0.023625932 0.021330105 0.029615223 0.023839246 0.016158396 0.017594005 0.018871859 0.019095547
0 50 0.014889874 0.013855806 0.017268173 0.014934473 0.011061422 0.011936494 0.012650974 0.012770631
100 0.002875399 0.002798267 0.003074157 0.002877112 0.002647 0.002684 0.002732 0.002733
10 0.443424453 0.37232446 0.670980348 0.462978234 0.230659435 0.266521464 0.290361778 0.301220382
25 0.070912 0.064586298 0.088307899 0.071511985 0.052096226 0.055207571 0.058514275 0.058911684
! 50 0.025067709 0.023923924 0.028171378 0.025120237 0.021855871 0.022323131 0.022948 0.022976
100 0.017031463 0.016248751 0.018808277 0.017048038 0.014213375 0.014837971 0.015441356 0.015482511
10 3.081596702 2.774430533 4.555899089 3.183616351 2.624729338 2.626635996 2.62645516 2.627562688
25 1.139807241 1.08431 1.338395342 1.145701 1.041475376 1.044776058 1.050626777 1.05101273
> 50 0.902986103 0.844206644 1.04527737 0.905569261 0.703482503 0.744333833 0.783893743 0.787729064
100 0.428799302 0.409031571 0.47363353 0.429217799 0.357529912 0.37335254 0.388604357 0.38965531
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