A Comparison between the Penalty Slice Regression (PS) and the Local Linear Estimator (LLE) for Estimating the Durbani Semi-Parametric Mode
DOI:
https://doi.org/10.31272/jae.i143.1225Keywords:
Durban Model SDM, partial slice regression, positional linear estimator, maximum possibility MLE, square root mean square error , RMSEAbstract
This research dealt with a comparison between the penalty slice regression (PS) and the local linear estimator (LLE) method to estimate the Durban spatial semi-parametric regression model (SDM) and find out which is the best. In the different sizes of the three samples used, where three sizes of samples (45, 75, 150) were used, as well as three values of spatial dependence, which are (0.25, 0.5, 0.9) and three values of variance (0.2, 0.5, 0.8), and the experiment was repeated (1000) times to obtain more accurate results.
Downloads
References
خمو، خلود يوسف (2004) " مقارنة أساليب بيز مع طرائق أخرى لتقدير منحنى الانحدار اللامعلمي " أطروحة دكتوراه في الإحصاء ، كلية الإدارة والاقتصاد، جامعة بغداد.
هادي، سوسن قاسم، (2014) " استعمال انماذج الانحدار الحيزي لتحليل نسب الفقر في اقضية العراق لعام 2012م"، رسالة ماجستير في الإحصاء، كلية الإدارة والاقتصاد، جامعة بغداد.
Basile, R. (2005). "Semi-parametric spatial autocovariance models of regional growth behaviour in Europe", Region et developpement.
Akkar, A. A. A. (2021)." Estimation The Spatial Durban Regression Model For Anemia Patients Sample In Some Region Of Al-Karkh/ Baghdad", Al-Mustansiryah University.
Costa, M. J. (2008). "Penalized spline models and applications" (Doctoral dissertation, University of Warwick)
Griggs, W. (2013). "Penalized spline regression and its applications". Whitman College Report. Available online at: https://www. whitman. edu/Documents/Academics/Mathematics/Griggs. pdf.
Lea Elears,(2019). “Spatial Autocorrelation And The Spatial Durbin Model, ROBUST Workshop Essen/R WI 21 Feb 2019,
Lesage, James P. (1999); "The Theory and Practice of Spatial Econometrics"; Department of Economics University of Toledo,
Wu, H., & Zhang, J. T. (2006). "Nonparametric regression methods for longitudinal data analysis: mixed-effects modeling approaches"

Downloads
Published
Issue
Section
License
The journal of Administration & Economics is an open- access journal that all contents are free of charge. Articles of this journal are licensed under the terms of the Creative Commons Attribution International Public License CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode) that licensees are unrestrictly allowedto search, download, share, distribute, print, or link to the full text of the articles, crawl them for indexing and reproduce any medium of the articles provided that they give the author(s) proper credits (citation). The journal allows the author(s) to retain the copyright of their published article.
Creative Commons-Attribution (BY)