Comparison of Some Nonparametric Methods Using Simulations

Authors

  • بسام هاشم داخل
  • أ.م.د علي ياسين غني

DOI:

https://doi.org/10.31272/jae.i129.66

Keywords:

time series, nonparametric regression, Nadaraya-Watson estimator, artificial intelligence, artificial neural networks, back-error propagation.

Abstract

 There was a need to compare the nonparametric methods used in predicting time series to find the most efficient method for forecasting, and this was in fact the main objective of this study. The research problem was summed up that parametric statistical methods need conditions and criteria that may be difficult to meet, so it was necessary to search for new methods of prediction other than the traditional methods, which are non-parametric methods. The comparison was through the application of the simulation method, where the data was generated by the restricted generation equation based on the original data, with the lowest value and the highest value for each type of data. The focus of the study is a comparison between the two methods of neural networks (the back propagation error network) and the kernel method (Nadaraya-Watson estimator). As for the sample sizes, the sizes (15, 30, 60 and 100) were selected. As for the criteria that were used for comparison, they were (MSE, RMSE, MAE, MAPE).The results showed, through simulation, that the neural networks give better and more efficient results than the Kernel method in most of the scales and for all sample sizes.

References

1) احمد, جحا و المسلاتي, عبد الله .2019, استخدام الشبكات العصبية للتنبؤ بالسلاسل الزمنية باستخدام طريقة التدريب ذات الانتشار الخلفي " كلية التقنية الصناعية, مصراته, ليبيا .

2) حازم, عزة. 2005, استخدام الشبكات العصبية في التكهن للسلاسل الزمنية بتطبيق على استهلاك الطاقة الكهربائية في محافظة نينوى , رسالة ماجستير, كلية علوم والحاسبات والرياضيات, جامعة الموصل.

3) الشوادفي, جمال احمد, السيد حجاج, عبد الوهاب 2013, الذكاء الاصطناعي مفهوما وتطبيقا, المجلة العلمية لقطاع كليات التجارة, جامعة الازهر, العدد العاشر .

4) شيخي , محمد .2011 , طرق القياس الاقتصادي محاضرات وتطبيقات , استاذ وباحث في جامعة ورقلة , الجزائر, الطبعة الاولى ,الحامد.

5) صليوا. رهاد, والبدراني, ظافر, 2014, تقييم تنبؤ السلسلة الزمنية لمعدلات درجات الحرارة باستخدام الشبكات العصبية, المجلة العراقية للعلوم الاحصائية ص 1-19.

6) عبد الحميد, مروان, 2019 "الشبكات العصبية الاصطناعية وطرائق تنبؤ السلاسل الزمنية", دار الكتب والوثائق, بغداد.

7) Hinton, Geoffrey. (1992). How Neural Networks Learn From Experience. Scientific American. 267. 144-51. DOI: https://doi.org/10.1038/scientificamerican0992-144

8) Hong, Yongmiao,(2020),"Introduction to Nonparametric Analysis in Time Series Econometrics " Chapter 6 of a manuscript entitled as Modern Time Series Analysis: Theory and Applications.

9) Luger, George (2009)" Artificial intelligence : structures and strategies for complex problem solving" University of New Mexico 6th ed.

10) Vilar, Juan & Cao, Ricardo. (2007)". Nonparametric Forecasting in Time Series - A Comparative Study". Communications in Statistics: Simulation and Computation. 36. 10.1080/03610910601158377. DOI: https://doi.org/10.1080/03610910601158377

Downloads

Published

2021-09-16

How to Cite

Comparison of Some Nonparametric Methods Using Simulations. (2021). Journal of Administration and Economics, 46(129), 456-467. https://doi.org/10.31272/jae.i129.66

Similar Articles

1-10 of 300

You may also start an advanced similarity search for this article.