Estimation of the parameters of the simple linear regression model in the presence of the problem of heterogeneity of variance of errors using some strong methods

Authors

  • Redha Qassem Muhammad Tamim
  • A.P.Dr. Ahmed Shaker Muhammad Taher

DOI:

https://doi.org/10.31272/jae.i134.1209

Keywords:

simple linear regression, heterogeneity of variance, estimation method (S),, estimation method (MPV).

Abstract

      The homogeneity of the variance of the limits of the random error of the regression model is one of the basic assumptions for obtaining estimates of least squares of the model coefficients, which are characterized as the best unbiased linear estimate, but this assumption may be unfulfilled in some practical applications, which calls for the use of alternative methods that provide us with relevant estimates. Efficient characteristics. Among those methods are the two immune estimation methods S and MPV, as these two methods were used to estimate the coefficients of the simple linear regression model in the presence of the problem of heterogeneity of variance of random errors, and based on real data representing consumer spending and the average per capita national income, a comparison was made between the estimates of the two methods. The results indicated that the (MPV) method was better than the (S) estimation method, based on the mean of squared error (MSE) criterion.

References

- بخيت، حسين علي ، و فتح الله، سحر. (2008). الاقتصاد القياسي. عمان، الاردن: دار اليازوري العلمية للنشر والتوزيع.

- بندر، علي قاسم محمد. (2018). تقدير انموذج الانحدار باستخدام طريقة المربعات الصغرى الموزونة الحصينة في حالة وجود مشكلة عدم تجانس التباين والقيم الشاذة معا مع تطبيق عملي. مجلة الادارة والاقتصاد، العدد 117، الصفحات 285-299.

- عبدالله، رائد اسمر. (2018). إختيار أفضل طريقة اختبار لمشكلة عدم تجانس التباين في نموذج الانحدار المتعدد (مع تطبيق عملي). رسالة ماجستير، كلية الادارة والاقتصاد جامعة كربلاء، قسم الاحصاء.

- علي، سيف حسين. (2019). اختيار افضل تقدير معالم إنموذج الانحدار الحصين مع تطبيق عملي. رسالة ماجستير، كلية الادارة والاقتصاد جامعة كربلاء، قسم الاحصاء .

- كاظم، اموري هادي. (2009). مقدمة في القياس الاقتصادي. عمان ، الاردن: دار زهران للنشر والتوزيع .

- Almetwally, E. M., & Almongy, H. M. (2018). Comparison Between M-Estimation, S-Estimation, and MM-Estimation Methods of Robust Estimation with Application and Simulation. International Journal of Mathematical Archive, 9(11), pp. 55-63.

- Gujarati, D. N. (2003). Basic Econometrics. New York: McGraw-Hill Companies,Inc.

- kmenta, J. (1986). Elements of Econometrics (Vol. Second Edition). New York: Macmillan Inc.

- MIDI, H., RANA, S., & IMON, A. R. (2009). The Performance of Robust Weighted Least Squares in the Presence of Outliers and Heteroscedastic Errors. WSEAS Transactions on Mathematics, vol. 8(issue 7), pp. 351-361.

- Montgomery, D. C., Peck, E. A., & Vining, G. G. (2006). Introduction to Linear Regression Analysis (4th ed.). Hoboken, New Jersey: John Wiley & Sons, Inc.

- Susanti, Y., Pratiwi, H., Sulistijowati, S., & Liana, T. (2014). M Estimation, S Estimation, and MM Estimation in Robust Regression. International Journal of Pure and Applied Mathematics, Vol. 91(No. 3), pp. 349-360. doi:http://dx.doi.org/10.12732/ijpam.v91i3.7

Downloads

Published

2024-08-08

How to Cite

Estimation of the parameters of the simple linear regression model in the presence of the problem of heterogeneity of variance of errors using some strong methods. (2024). Journal of Administration and Economics, 47(134), 174-183. https://doi.org/10.31272/jae.i134.1209

Similar Articles

1-10 of 320

You may also start an advanced similarity search for this article.