Segmentation of Magnetic Resonance Images of Brain Tumors using Support Vector Machine Method (Support Vector Machine)

Authors

  • Israa Kazim Rasheed
  • Dr. Haifa Taha Abd

DOI:

https://doi.org/10.31272/jae.i133.943

Keywords:

: Brain Tumors, Image Segmentation, Support Vector Machine Technique, , Features extraction

Abstract

The Support Vector Machine (SVM) technology was used to segment a set of brain MRI images. This segmentation process is based on classifying the data and separating it linearly and non-linearly into two categories by finding perfect points that represent the boundary between the points of the two groups and through these points The remaining points are distinguished, and the data is separated by using prominent regions and separated from the background by using Fourier transform and using the new modified data in order to obtain the binary coding of the image and then training this data according to the encoding, and then using the SVM model in order to train the data Extracting the fragmentary image and identifying the tumors in it.

Downloads

Download data is not yet available.

References

العمري ، هدى عبد الله ، (2004) ، "كروموسومات جينية لتجزئة الصور" ، رسالة ماجستير, جامعة الموصل ، كلية علوم الحاسبات والرياضيات قسم علوم الحاسبات.

المولى , محمد ناظم داود , (2007) , " تقطيع صور اورام الدماغ ممثلة بالخوارزمية الجينية " ,رسالة ماجستير ,جامعة الموصل ,كلية الحاسبات والرياضيات, قسم علوم الحاسبات.

محمد , اسامة ياسين, (2010), "تمييز الصور الطبية للدماغ باستخدام تقنيات البايومعلوماتية", رسالة ماجستير, جامعة الموصل ، كلية علوم الحاسبات والرياضيات قسم علوم الحاسبات.

مفضي . فواز, حمزات . حسام , (2015) , " ضغط الصور المجسمة بتقدير الفرق بين الصورتين واستخدام التحويل الانحنائية الرقمي ثنائي البعد", مجلة جامعة تشرين للبحوث والدراسات العلمية _ سلسلة العلوم الهندسية المجلد (37 )العدد (1 ) .

Abid . H and Abdulmunim . M , (2016), "Segmentation Brain Tumor and Diagnosing Using Watershed Algorithm", American Journal of Engineering Research (AJER), Vol5, Issue-11, PP. [31-35].

Asamoah . D , Ofori . E , Opoku . S and Danso . J , (2018) , "Measuring the Performance of Image Contrast Enhancement Technique", International Journal of Computer Applications (0975 – 8887) Volume 181 – No. 22, October 2018.

Bai . X and Wang . W , (2014) "Saliency-SVM: An automatic approach for image segmentation", Contents lists available at Science Direct journal homepage: www.elsevier.com/ locate /neucom Neurocomputing.

Berisha . S , (2009) , "Image Classification Using Gabor Filters and Machine Learning" , Thesis Submitted to the Graduate Faculty of wake Forest University in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Computer Science pp.(34 –36).

Murugan . S , Sumithra . M and Murugappan . M , (2017), "Efficient Clustering of Unlabeled Brain DICOM Images based on similarity" , J. Phys Journal of Physics Conference Series IOP Publishing .

Shilton . A , (2006) , " Design and Training of Support Vector Machines" , Submitted in total fulfilment of the requirements for the degree of doctor of Philosophy, Department Of Electrical and Electronic Engineering , The University of Melbourne Australia .

Theodoridis . S and Koutroumbas . K , ( 2009)," Pattern Recognition" (Fourth Edition), Elsevier Inc.

Theodoridis . S and Koutroumbas . K, (2003)," Pattern Recognition", (second edition) , Elsevier Academic Pres .

Vapnik . V, ( 1999 ) "The Nature Of Statistical Learning Theory" , 2nd.ed.,Springer.

Downloads

Published

2023-06-20

How to Cite

Segmentation of Magnetic Resonance Images of Brain Tumors using Support Vector Machine Method (Support Vector Machine). (2023). Journal of Administration and Economics, 47(133), 235-244. https://doi.org/10.31272/jae.i133.943

Similar Articles

1-10 of 144

You may also start an advanced similarity search for this article.